Protein structure prediction using diversity controlled self-adaptive differential evolution with local search

In this paper, Protein Structure Prediction problem is solved using Diversity Controlled Self-Adaptive Differential Evolution with Local search (DCSaDE-LS). DCSaDE-LS, an improved version of Self-Adaptive Differential Evolution (SaDE), use simple fuzzy system to control the diversity of individuals...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2015-06, Vol.19 (6), p.1635-1646
Hauptverfasser: Sudha, S., Baskar, S., Amali, S. Miruna Joe, Krishnaswamy, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1646
container_issue 6
container_start_page 1635
container_title Soft computing (Berlin, Germany)
container_volume 19
creator Sudha, S.
Baskar, S.
Amali, S. Miruna Joe
Krishnaswamy, S.
description In this paper, Protein Structure Prediction problem is solved using Diversity Controlled Self-Adaptive Differential Evolution with Local search (DCSaDE-LS). DCSaDE-LS, an improved version of Self-Adaptive Differential Evolution (SaDE), use simple fuzzy system to control the diversity of individuals and local search to maintain a balance between exploration and exploitation. DCSaDE-LS with four different local search replacement strategies are used. SaDE is also implemented for comparison purposes. Algorithms are tested on a peptide Met-enkephalin for force fields ECEPP/2, ECEPP/3 and CHARMM22. Results show that both DCSaDE-LS and SaDE produce the best energy for both force fields. Among the four replacement strategies, DCSaDE-LS1 strategy reports better results than other strategies and SaDE in terms of number of function evaluations, mean energy and success rate. Best conformations obtained using DCSaDE-LS is compared with native structure 1PLW and GEM structure Scheraga. Nonparametric statistical tests for multiple comparisons ( 1 × N ) with control method are implemented for CHARMM22 observations. A set of unique 100 best conformations obtained from DCSaDE-LS are clustered into 3 independent clusters suggesting the robustness of this methodology and the ability to explore the conformational space available and to populate the near native conformations.
doi_str_mv 10.1007/s00500-014-1353-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918030218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918030218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-553834ea153cc86e340b3eaaceb9fa5a5133081ffea2d7fc0c9b564252591d8d3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAczQfm_04SvELCnrQc0izs23KmqxJttJ_b9oVPHmaYeZ95mVehK4ZvWWUVneRUkkpoawgTEhB-AmasUIIUhVVc3rsOanKQpyjixi3lHJWSTFD7i34BNbhmMJo0hgADwFaa5L1Do_RujVu7Q5CtGmPjXcp-L6HFkfoO6JbPaS8zZKugwAuWd1j2Pl-PPLfNm1w700eRtDBbC7RWaf7CFe_dY4-Hh_eF89k-fr0srhfEiNYmYiUohYFaCaFMXUJoqArAVobWDWdlloyIWjNsqfmbdUZapqVLAsuuWxYW7dijm6mu0PwXyPEpLZ-DC5bKt6wmor8f51VbFKZ4GMM0Kkh2E8d9opRdYhVTbGqHKs6xKp4ZvjExKx1awh_l_-HfgCR031e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918030218</pqid></control><display><type>article</type><title>Protein structure prediction using diversity controlled self-adaptive differential evolution with local search</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Sudha, S. ; Baskar, S. ; Amali, S. Miruna Joe ; Krishnaswamy, S.</creator><creatorcontrib>Sudha, S. ; Baskar, S. ; Amali, S. Miruna Joe ; Krishnaswamy, S.</creatorcontrib><description>In this paper, Protein Structure Prediction problem is solved using Diversity Controlled Self-Adaptive Differential Evolution with Local search (DCSaDE-LS). DCSaDE-LS, an improved version of Self-Adaptive Differential Evolution (SaDE), use simple fuzzy system to control the diversity of individuals and local search to maintain a balance between exploration and exploitation. DCSaDE-LS with four different local search replacement strategies are used. SaDE is also implemented for comparison purposes. Algorithms are tested on a peptide Met-enkephalin for force fields ECEPP/2, ECEPP/3 and CHARMM22. Results show that both DCSaDE-LS and SaDE produce the best energy for both force fields. Among the four replacement strategies, DCSaDE-LS1 strategy reports better results than other strategies and SaDE in terms of number of function evaluations, mean energy and success rate. Best conformations obtained using DCSaDE-LS is compared with native structure 1PLW and GEM structure Scheraga. Nonparametric statistical tests for multiple comparisons ( 1 × N ) with control method are implemented for CHARMM22 observations. A set of unique 100 best conformations obtained from DCSaDE-LS are clustered into 3 independent clusters suggesting the robustness of this methodology and the ability to explore the conformational space available and to populate the near native conformations.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-014-1353-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptation ; Algorithms ; Amino acids ; Artificial Intelligence ; Computational Intelligence ; Control ; Control methods ; Energy ; Engineering ; Evolutionary computation ; Fuzzy control ; Genetic algorithms ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Optimization techniques ; Peptides ; Protein folding ; Proteins ; Robotics ; Searching ; Statistical tests ; Success</subject><ispartof>Soft computing (Berlin, Germany), 2015-06, Vol.19 (6), p.1635-1646</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Springer-Verlag Berlin Heidelberg 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-553834ea153cc86e340b3eaaceb9fa5a5133081ffea2d7fc0c9b564252591d8d3</citedby><cites>FETCH-LOGICAL-c316t-553834ea153cc86e340b3eaaceb9fa5a5133081ffea2d7fc0c9b564252591d8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-014-1353-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918030218?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Sudha, S.</creatorcontrib><creatorcontrib>Baskar, S.</creatorcontrib><creatorcontrib>Amali, S. Miruna Joe</creatorcontrib><creatorcontrib>Krishnaswamy, S.</creatorcontrib><title>Protein structure prediction using diversity controlled self-adaptive differential evolution with local search</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>In this paper, Protein Structure Prediction problem is solved using Diversity Controlled Self-Adaptive Differential Evolution with Local search (DCSaDE-LS). DCSaDE-LS, an improved version of Self-Adaptive Differential Evolution (SaDE), use simple fuzzy system to control the diversity of individuals and local search to maintain a balance between exploration and exploitation. DCSaDE-LS with four different local search replacement strategies are used. SaDE is also implemented for comparison purposes. Algorithms are tested on a peptide Met-enkephalin for force fields ECEPP/2, ECEPP/3 and CHARMM22. Results show that both DCSaDE-LS and SaDE produce the best energy for both force fields. Among the four replacement strategies, DCSaDE-LS1 strategy reports better results than other strategies and SaDE in terms of number of function evaluations, mean energy and success rate. Best conformations obtained using DCSaDE-LS is compared with native structure 1PLW and GEM structure Scheraga. Nonparametric statistical tests for multiple comparisons ( 1 × N ) with control method are implemented for CHARMM22 observations. A set of unique 100 best conformations obtained from DCSaDE-LS are clustered into 3 independent clusters suggesting the robustness of this methodology and the ability to explore the conformational space available and to populate the near native conformations.</description><subject>Adaptation</subject><subject>Algorithms</subject><subject>Amino acids</subject><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Control methods</subject><subject>Energy</subject><subject>Engineering</subject><subject>Evolutionary computation</subject><subject>Fuzzy control</subject><subject>Genetic algorithms</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Optimization techniques</subject><subject>Peptides</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>Robotics</subject><subject>Searching</subject><subject>Statistical tests</subject><subject>Success</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wFvAczQfm_04SvELCnrQc0izs23KmqxJttJ_b9oVPHmaYeZ95mVehK4ZvWWUVneRUkkpoawgTEhB-AmasUIIUhVVc3rsOanKQpyjixi3lHJWSTFD7i34BNbhmMJo0hgADwFaa5L1Do_RujVu7Q5CtGmPjXcp-L6HFkfoO6JbPaS8zZKugwAuWd1j2Pl-PPLfNm1w700eRtDBbC7RWaf7CFe_dY4-Hh_eF89k-fr0srhfEiNYmYiUohYFaCaFMXUJoqArAVobWDWdlloyIWjNsqfmbdUZapqVLAsuuWxYW7dijm6mu0PwXyPEpLZ-DC5bKt6wmor8f51VbFKZ4GMM0Kkh2E8d9opRdYhVTbGqHKs6xKp4ZvjExKx1awh_l_-HfgCR031e</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Sudha, S.</creator><creator>Baskar, S.</creator><creator>Amali, S. Miruna Joe</creator><creator>Krishnaswamy, S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20150601</creationdate><title>Protein structure prediction using diversity controlled self-adaptive differential evolution with local search</title><author>Sudha, S. ; Baskar, S. ; Amali, S. Miruna Joe ; Krishnaswamy, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-553834ea153cc86e340b3eaaceb9fa5a5133081ffea2d7fc0c9b564252591d8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptation</topic><topic>Algorithms</topic><topic>Amino acids</topic><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Control methods</topic><topic>Energy</topic><topic>Engineering</topic><topic>Evolutionary computation</topic><topic>Fuzzy control</topic><topic>Genetic algorithms</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Optimization techniques</topic><topic>Peptides</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>Robotics</topic><topic>Searching</topic><topic>Statistical tests</topic><topic>Success</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sudha, S.</creatorcontrib><creatorcontrib>Baskar, S.</creatorcontrib><creatorcontrib>Amali, S. Miruna Joe</creatorcontrib><creatorcontrib>Krishnaswamy, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sudha, S.</au><au>Baskar, S.</au><au>Amali, S. Miruna Joe</au><au>Krishnaswamy, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein structure prediction using diversity controlled self-adaptive differential evolution with local search</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>19</volume><issue>6</issue><spage>1635</spage><epage>1646</epage><pages>1635-1646</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>In this paper, Protein Structure Prediction problem is solved using Diversity Controlled Self-Adaptive Differential Evolution with Local search (DCSaDE-LS). DCSaDE-LS, an improved version of Self-Adaptive Differential Evolution (SaDE), use simple fuzzy system to control the diversity of individuals and local search to maintain a balance between exploration and exploitation. DCSaDE-LS with four different local search replacement strategies are used. SaDE is also implemented for comparison purposes. Algorithms are tested on a peptide Met-enkephalin for force fields ECEPP/2, ECEPP/3 and CHARMM22. Results show that both DCSaDE-LS and SaDE produce the best energy for both force fields. Among the four replacement strategies, DCSaDE-LS1 strategy reports better results than other strategies and SaDE in terms of number of function evaluations, mean energy and success rate. Best conformations obtained using DCSaDE-LS is compared with native structure 1PLW and GEM structure Scheraga. Nonparametric statistical tests for multiple comparisons ( 1 × N ) with control method are implemented for CHARMM22 observations. A set of unique 100 best conformations obtained from DCSaDE-LS are clustered into 3 independent clusters suggesting the robustness of this methodology and the ability to explore the conformational space available and to populate the near native conformations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-014-1353-2</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2015-06, Vol.19 (6), p.1635-1646
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2918030218
source Springer Nature - Complete Springer Journals; ProQuest Central
subjects Adaptation
Algorithms
Amino acids
Artificial Intelligence
Computational Intelligence
Control
Control methods
Energy
Engineering
Evolutionary computation
Fuzzy control
Genetic algorithms
Mathematical Logic and Foundations
Mechatronics
Methodologies and Application
Optimization techniques
Peptides
Protein folding
Proteins
Robotics
Searching
Statistical tests
Success
title Protein structure prediction using diversity controlled self-adaptive differential evolution with local search
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A37%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20structure%20prediction%20using%20diversity%20controlled%20self-adaptive%20differential%20evolution%20with%20local%20search&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Sudha,%20S.&rft.date=2015-06-01&rft.volume=19&rft.issue=6&rft.spage=1635&rft.epage=1646&rft.pages=1635-1646&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-014-1353-2&rft_dat=%3Cproquest_cross%3E2918030218%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918030218&rft_id=info:pmid/&rfr_iscdi=true