Protein structure prediction using diversity controlled self-adaptive differential evolution with local search
In this paper, Protein Structure Prediction problem is solved using Diversity Controlled Self-Adaptive Differential Evolution with Local search (DCSaDE-LS). DCSaDE-LS, an improved version of Self-Adaptive Differential Evolution (SaDE), use simple fuzzy system to control the diversity of individuals...
Gespeichert in:
Veröffentlicht in: | Soft computing (Berlin, Germany) Germany), 2015-06, Vol.19 (6), p.1635-1646 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1646 |
---|---|
container_issue | 6 |
container_start_page | 1635 |
container_title | Soft computing (Berlin, Germany) |
container_volume | 19 |
creator | Sudha, S. Baskar, S. Amali, S. Miruna Joe Krishnaswamy, S. |
description | In this paper, Protein Structure Prediction problem is solved using Diversity Controlled Self-Adaptive Differential Evolution with Local search (DCSaDE-LS). DCSaDE-LS, an improved version of Self-Adaptive Differential Evolution (SaDE), use simple fuzzy system to control the diversity of individuals and local search to maintain a balance between exploration and exploitation. DCSaDE-LS with four different local search replacement strategies are used. SaDE is also implemented for comparison purposes. Algorithms are tested on a peptide Met-enkephalin for force fields ECEPP/2, ECEPP/3 and CHARMM22. Results show that both DCSaDE-LS and SaDE produce the best energy for both force fields. Among the four replacement strategies, DCSaDE-LS1 strategy reports better results than other strategies and SaDE in terms of number of function evaluations, mean energy and success rate. Best conformations obtained using DCSaDE-LS is compared with native structure 1PLW and GEM structure Scheraga. Nonparametric statistical tests for multiple comparisons (
1
×
N
) with control method are implemented for CHARMM22 observations. A set of unique 100 best conformations obtained from DCSaDE-LS are clustered into 3 independent clusters suggesting the robustness of this methodology and the ability to explore the conformational space available and to populate the near native conformations. |
doi_str_mv | 10.1007/s00500-014-1353-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918030218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918030218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-553834ea153cc86e340b3eaaceb9fa5a5133081ffea2d7fc0c9b564252591d8d3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAczQfm_04SvELCnrQc0izs23KmqxJttJ_b9oVPHmaYeZ95mVehK4ZvWWUVneRUkkpoawgTEhB-AmasUIIUhVVc3rsOanKQpyjixi3lHJWSTFD7i34BNbhmMJo0hgADwFaa5L1Do_RujVu7Q5CtGmPjXcp-L6HFkfoO6JbPaS8zZKugwAuWd1j2Pl-PPLfNm1w700eRtDBbC7RWaf7CFe_dY4-Hh_eF89k-fr0srhfEiNYmYiUohYFaCaFMXUJoqArAVobWDWdlloyIWjNsqfmbdUZapqVLAsuuWxYW7dijm6mu0PwXyPEpLZ-DC5bKt6wmor8f51VbFKZ4GMM0Kkh2E8d9opRdYhVTbGqHKs6xKp4ZvjExKx1awh_l_-HfgCR031e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918030218</pqid></control><display><type>article</type><title>Protein structure prediction using diversity controlled self-adaptive differential evolution with local search</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Sudha, S. ; Baskar, S. ; Amali, S. Miruna Joe ; Krishnaswamy, S.</creator><creatorcontrib>Sudha, S. ; Baskar, S. ; Amali, S. Miruna Joe ; Krishnaswamy, S.</creatorcontrib><description>In this paper, Protein Structure Prediction problem is solved using Diversity Controlled Self-Adaptive Differential Evolution with Local search (DCSaDE-LS). DCSaDE-LS, an improved version of Self-Adaptive Differential Evolution (SaDE), use simple fuzzy system to control the diversity of individuals and local search to maintain a balance between exploration and exploitation. DCSaDE-LS with four different local search replacement strategies are used. SaDE is also implemented for comparison purposes. Algorithms are tested on a peptide Met-enkephalin for force fields ECEPP/2, ECEPP/3 and CHARMM22. Results show that both DCSaDE-LS and SaDE produce the best energy for both force fields. Among the four replacement strategies, DCSaDE-LS1 strategy reports better results than other strategies and SaDE in terms of number of function evaluations, mean energy and success rate. Best conformations obtained using DCSaDE-LS is compared with native structure 1PLW and GEM structure Scheraga. Nonparametric statistical tests for multiple comparisons (
1
×
N
) with control method are implemented for CHARMM22 observations. A set of unique 100 best conformations obtained from DCSaDE-LS are clustered into 3 independent clusters suggesting the robustness of this methodology and the ability to explore the conformational space available and to populate the near native conformations.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-014-1353-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptation ; Algorithms ; Amino acids ; Artificial Intelligence ; Computational Intelligence ; Control ; Control methods ; Energy ; Engineering ; Evolutionary computation ; Fuzzy control ; Genetic algorithms ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Optimization techniques ; Peptides ; Protein folding ; Proteins ; Robotics ; Searching ; Statistical tests ; Success</subject><ispartof>Soft computing (Berlin, Germany), 2015-06, Vol.19 (6), p.1635-1646</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Springer-Verlag Berlin Heidelberg 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-553834ea153cc86e340b3eaaceb9fa5a5133081ffea2d7fc0c9b564252591d8d3</citedby><cites>FETCH-LOGICAL-c316t-553834ea153cc86e340b3eaaceb9fa5a5133081ffea2d7fc0c9b564252591d8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-014-1353-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918030218?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Sudha, S.</creatorcontrib><creatorcontrib>Baskar, S.</creatorcontrib><creatorcontrib>Amali, S. Miruna Joe</creatorcontrib><creatorcontrib>Krishnaswamy, S.</creatorcontrib><title>Protein structure prediction using diversity controlled self-adaptive differential evolution with local search</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>In this paper, Protein Structure Prediction problem is solved using Diversity Controlled Self-Adaptive Differential Evolution with Local search (DCSaDE-LS). DCSaDE-LS, an improved version of Self-Adaptive Differential Evolution (SaDE), use simple fuzzy system to control the diversity of individuals and local search to maintain a balance between exploration and exploitation. DCSaDE-LS with four different local search replacement strategies are used. SaDE is also implemented for comparison purposes. Algorithms are tested on a peptide Met-enkephalin for force fields ECEPP/2, ECEPP/3 and CHARMM22. Results show that both DCSaDE-LS and SaDE produce the best energy for both force fields. Among the four replacement strategies, DCSaDE-LS1 strategy reports better results than other strategies and SaDE in terms of number of function evaluations, mean energy and success rate. Best conformations obtained using DCSaDE-LS is compared with native structure 1PLW and GEM structure Scheraga. Nonparametric statistical tests for multiple comparisons (
1
×
N
) with control method are implemented for CHARMM22 observations. A set of unique 100 best conformations obtained from DCSaDE-LS are clustered into 3 independent clusters suggesting the robustness of this methodology and the ability to explore the conformational space available and to populate the near native conformations.</description><subject>Adaptation</subject><subject>Algorithms</subject><subject>Amino acids</subject><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Control methods</subject><subject>Energy</subject><subject>Engineering</subject><subject>Evolutionary computation</subject><subject>Fuzzy control</subject><subject>Genetic algorithms</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Optimization techniques</subject><subject>Peptides</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>Robotics</subject><subject>Searching</subject><subject>Statistical tests</subject><subject>Success</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wFvAczQfm_04SvELCnrQc0izs23KmqxJttJ_b9oVPHmaYeZ95mVehK4ZvWWUVneRUkkpoawgTEhB-AmasUIIUhVVc3rsOanKQpyjixi3lHJWSTFD7i34BNbhmMJo0hgADwFaa5L1Do_RujVu7Q5CtGmPjXcp-L6HFkfoO6JbPaS8zZKugwAuWd1j2Pl-PPLfNm1w700eRtDBbC7RWaf7CFe_dY4-Hh_eF89k-fr0srhfEiNYmYiUohYFaCaFMXUJoqArAVobWDWdlloyIWjNsqfmbdUZapqVLAsuuWxYW7dijm6mu0PwXyPEpLZ-DC5bKt6wmor8f51VbFKZ4GMM0Kkh2E8d9opRdYhVTbGqHKs6xKp4ZvjExKx1awh_l_-HfgCR031e</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Sudha, S.</creator><creator>Baskar, S.</creator><creator>Amali, S. Miruna Joe</creator><creator>Krishnaswamy, S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20150601</creationdate><title>Protein structure prediction using diversity controlled self-adaptive differential evolution with local search</title><author>Sudha, S. ; Baskar, S. ; Amali, S. Miruna Joe ; Krishnaswamy, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-553834ea153cc86e340b3eaaceb9fa5a5133081ffea2d7fc0c9b564252591d8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptation</topic><topic>Algorithms</topic><topic>Amino acids</topic><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Control methods</topic><topic>Energy</topic><topic>Engineering</topic><topic>Evolutionary computation</topic><topic>Fuzzy control</topic><topic>Genetic algorithms</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Optimization techniques</topic><topic>Peptides</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>Robotics</topic><topic>Searching</topic><topic>Statistical tests</topic><topic>Success</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sudha, S.</creatorcontrib><creatorcontrib>Baskar, S.</creatorcontrib><creatorcontrib>Amali, S. Miruna Joe</creatorcontrib><creatorcontrib>Krishnaswamy, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sudha, S.</au><au>Baskar, S.</au><au>Amali, S. Miruna Joe</au><au>Krishnaswamy, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein structure prediction using diversity controlled self-adaptive differential evolution with local search</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>19</volume><issue>6</issue><spage>1635</spage><epage>1646</epage><pages>1635-1646</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>In this paper, Protein Structure Prediction problem is solved using Diversity Controlled Self-Adaptive Differential Evolution with Local search (DCSaDE-LS). DCSaDE-LS, an improved version of Self-Adaptive Differential Evolution (SaDE), use simple fuzzy system to control the diversity of individuals and local search to maintain a balance between exploration and exploitation. DCSaDE-LS with four different local search replacement strategies are used. SaDE is also implemented for comparison purposes. Algorithms are tested on a peptide Met-enkephalin for force fields ECEPP/2, ECEPP/3 and CHARMM22. Results show that both DCSaDE-LS and SaDE produce the best energy for both force fields. Among the four replacement strategies, DCSaDE-LS1 strategy reports better results than other strategies and SaDE in terms of number of function evaluations, mean energy and success rate. Best conformations obtained using DCSaDE-LS is compared with native structure 1PLW and GEM structure Scheraga. Nonparametric statistical tests for multiple comparisons (
1
×
N
) with control method are implemented for CHARMM22 observations. A set of unique 100 best conformations obtained from DCSaDE-LS are clustered into 3 independent clusters suggesting the robustness of this methodology and the ability to explore the conformational space available and to populate the near native conformations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-014-1353-2</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-7643 |
ispartof | Soft computing (Berlin, Germany), 2015-06, Vol.19 (6), p.1635-1646 |
issn | 1432-7643 1433-7479 |
language | eng |
recordid | cdi_proquest_journals_2918030218 |
source | Springer Nature - Complete Springer Journals; ProQuest Central |
subjects | Adaptation Algorithms Amino acids Artificial Intelligence Computational Intelligence Control Control methods Energy Engineering Evolutionary computation Fuzzy control Genetic algorithms Mathematical Logic and Foundations Mechatronics Methodologies and Application Optimization techniques Peptides Protein folding Proteins Robotics Searching Statistical tests Success |
title | Protein structure prediction using diversity controlled self-adaptive differential evolution with local search |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A37%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20structure%20prediction%20using%20diversity%20controlled%20self-adaptive%20differential%20evolution%20with%20local%20search&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Sudha,%20S.&rft.date=2015-06-01&rft.volume=19&rft.issue=6&rft.spage=1635&rft.epage=1646&rft.pages=1635-1646&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-014-1353-2&rft_dat=%3Cproquest_cross%3E2918030218%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918030218&rft_id=info:pmid/&rfr_iscdi=true |