3D target detection using dual domain attention and SIFT operator in indoor scenes
In a large number of real-life scenes and practical applications, 3D object detection is playing an increasingly important role. We need to estimate the position and direction of the 3D object in the real scene to complete the 3D object detection task. In this paper, we propose a new network archite...
Gespeichert in:
Veröffentlicht in: | The Visual computer 2022-11, Vol.38 (11), p.3765-3774 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3774 |
---|---|
container_issue | 11 |
container_start_page | 3765 |
container_title | The Visual computer |
container_volume | 38 |
creator | Zhao, Hanshuo Yang, Dedong Yu, Jiankang |
description | In a large number of real-life scenes and practical applications, 3D object detection is playing an increasingly important role. We need to estimate the position and direction of the 3D object in the real scene to complete the 3D object detection task. In this paper, we propose a new network architecture based on VoteNet to detect 3D point cloud targets. On the one hand, we use channel and spatial dual-domain attention module to enhance the features of the object to be detected while suppressing other useless features. On the other hand, the SIFT operator has scale invariance and the ability to resist occlusion and background interference. The PointSIFT module we use can capture information in different directions of point cloud in space, and is robust to shapes of different proportions, so as to better detect objects that are partially occluded. Our method is evaluated on the SUN-RGBD and ScanNet datasets of indoor scenes. The experimental results show that our method has better performance than VoteNet. |
doi_str_mv | 10.1007/s00371-021-02217-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918029450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918029450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-1824867fd48796f52f516a88f5419d2fd988e77150c77623b0bdd03295672a383</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wFPA82oy2d0kR6lWCwVB6zmkm-yypU1qkj3YX2_aFbx5GGaGee8NfAjdUnJPCeEPkRDGaUHgWEB5cThDE1oyKIDR6hxNCOWiAC7kJbqKcUPyzks5Qe_sCScdOpuwsck2qfcOD7F3HTaD3mLjd7p3WKdk3emmncEfi_kK-70NOvmA87l3xucpNtbZeI0uWr2N9ua3T9Hn_Hk1ey2Wby-L2eOyaKCUqaACSlHz1pSCy7qtoK1orYVoq5JKA62RQljOaUUazmtga7I2hjCQVc1BM8Gm6G7M3Qf_NdiY1MYPweWXCiQVBGRZkayCUdUEH2OwrdqHfqfDt6JEHdmpkZ3K7NSJnTpkExtNMYtdZ8Nf9D-uH8yacFo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918029450</pqid></control><display><type>article</type><title>3D target detection using dual domain attention and SIFT operator in indoor scenes</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Zhao, Hanshuo ; Yang, Dedong ; Yu, Jiankang</creator><creatorcontrib>Zhao, Hanshuo ; Yang, Dedong ; Yu, Jiankang</creatorcontrib><description>In a large number of real-life scenes and practical applications, 3D object detection is playing an increasingly important role. We need to estimate the position and direction of the 3D object in the real scene to complete the 3D object detection task. In this paper, we propose a new network architecture based on VoteNet to detect 3D point cloud targets. On the one hand, we use channel and spatial dual-domain attention module to enhance the features of the object to be detected while suppressing other useless features. On the other hand, the SIFT operator has scale invariance and the ability to resist occlusion and background interference. The PointSIFT module we use can capture information in different directions of point cloud in space, and is robust to shapes of different proportions, so as to better detect objects that are partially occluded. Our method is evaluated on the SUN-RGBD and ScanNet datasets of indoor scenes. The experimental results show that our method has better performance than VoteNet.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-021-02217-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Computer Graphics ; Computer Science ; Datasets ; Deep learning ; Image Processing and Computer Vision ; Modules ; Neural networks ; Object recognition ; Occlusion ; Original Article ; Scale invariance ; Target detection ; Three dimensional models</subject><ispartof>The Visual computer, 2022-11, Vol.38 (11), p.3765-3774</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-1824867fd48796f52f516a88f5419d2fd988e77150c77623b0bdd03295672a383</citedby><cites>FETCH-LOGICAL-c249t-1824867fd48796f52f516a88f5419d2fd988e77150c77623b0bdd03295672a383</cites><orcidid>0000-0001-7950-6810</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-021-02217-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918029450?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51298,64362,64366,72216</link.rule.ids></links><search><creatorcontrib>Zhao, Hanshuo</creatorcontrib><creatorcontrib>Yang, Dedong</creatorcontrib><creatorcontrib>Yu, Jiankang</creatorcontrib><title>3D target detection using dual domain attention and SIFT operator in indoor scenes</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>In a large number of real-life scenes and practical applications, 3D object detection is playing an increasingly important role. We need to estimate the position and direction of the 3D object in the real scene to complete the 3D object detection task. In this paper, we propose a new network architecture based on VoteNet to detect 3D point cloud targets. On the one hand, we use channel and spatial dual-domain attention module to enhance the features of the object to be detected while suppressing other useless features. On the other hand, the SIFT operator has scale invariance and the ability to resist occlusion and background interference. The PointSIFT module we use can capture information in different directions of point cloud in space, and is robust to shapes of different proportions, so as to better detect objects that are partially occluded. Our method is evaluated on the SUN-RGBD and ScanNet datasets of indoor scenes. The experimental results show that our method has better performance than VoteNet.</description><subject>Artificial Intelligence</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Image Processing and Computer Vision</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Occlusion</subject><subject>Original Article</subject><subject>Scale invariance</subject><subject>Target detection</subject><subject>Three dimensional models</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEFLAzEQhYMoWKt_wFPA82oy2d0kR6lWCwVB6zmkm-yypU1qkj3YX2_aFbx5GGaGee8NfAjdUnJPCeEPkRDGaUHgWEB5cThDE1oyKIDR6hxNCOWiAC7kJbqKcUPyzks5Qe_sCScdOpuwsck2qfcOD7F3HTaD3mLjd7p3WKdk3emmncEfi_kK-70NOvmA87l3xucpNtbZeI0uWr2N9ua3T9Hn_Hk1ey2Wby-L2eOyaKCUqaACSlHz1pSCy7qtoK1orYVoq5JKA62RQljOaUUazmtga7I2hjCQVc1BM8Gm6G7M3Qf_NdiY1MYPweWXCiQVBGRZkayCUdUEH2OwrdqHfqfDt6JEHdmpkZ3K7NSJnTpkExtNMYtdZ8Nf9D-uH8yacFo</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Zhao, Hanshuo</creator><creator>Yang, Dedong</creator><creator>Yu, Jiankang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-7950-6810</orcidid></search><sort><creationdate>20221101</creationdate><title>3D target detection using dual domain attention and SIFT operator in indoor scenes</title><author>Zhao, Hanshuo ; Yang, Dedong ; Yu, Jiankang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-1824867fd48796f52f516a88f5419d2fd988e77150c77623b0bdd03295672a383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Image Processing and Computer Vision</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Occlusion</topic><topic>Original Article</topic><topic>Scale invariance</topic><topic>Target detection</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Hanshuo</creatorcontrib><creatorcontrib>Yang, Dedong</creatorcontrib><creatorcontrib>Yu, Jiankang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Hanshuo</au><au>Yang, Dedong</au><au>Yu, Jiankang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D target detection using dual domain attention and SIFT operator in indoor scenes</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>38</volume><issue>11</issue><spage>3765</spage><epage>3774</epage><pages>3765-3774</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>In a large number of real-life scenes and practical applications, 3D object detection is playing an increasingly important role. We need to estimate the position and direction of the 3D object in the real scene to complete the 3D object detection task. In this paper, we propose a new network architecture based on VoteNet to detect 3D point cloud targets. On the one hand, we use channel and spatial dual-domain attention module to enhance the features of the object to be detected while suppressing other useless features. On the other hand, the SIFT operator has scale invariance and the ability to resist occlusion and background interference. The PointSIFT module we use can capture information in different directions of point cloud in space, and is robust to shapes of different proportions, so as to better detect objects that are partially occluded. Our method is evaluated on the SUN-RGBD and ScanNet datasets of indoor scenes. The experimental results show that our method has better performance than VoteNet.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-021-02217-z</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7950-6810</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-2789 |
ispartof | The Visual computer, 2022-11, Vol.38 (11), p.3765-3774 |
issn | 0178-2789 1432-2315 |
language | eng |
recordid | cdi_proquest_journals_2918029450 |
source | Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Artificial Intelligence Computer Graphics Computer Science Datasets Deep learning Image Processing and Computer Vision Modules Neural networks Object recognition Occlusion Original Article Scale invariance Target detection Three dimensional models |
title | 3D target detection using dual domain attention and SIFT operator in indoor scenes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A17%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20target%20detection%20using%20dual%20domain%20attention%20and%20SIFT%20operator%20in%20indoor%20scenes&rft.jtitle=The%20Visual%20computer&rft.au=Zhao,%20Hanshuo&rft.date=2022-11-01&rft.volume=38&rft.issue=11&rft.spage=3765&rft.epage=3774&rft.pages=3765-3774&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-021-02217-z&rft_dat=%3Cproquest_cross%3E2918029450%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918029450&rft_id=info:pmid/&rfr_iscdi=true |