DART: a visual analytics system for understanding dynamic association rule mining

Dynamic rule mining can discover time-dependent association rules and provide more accurate descriptions about the relationship among items at different time periods and temporal granularities. However, users still face some challenges in analyzing and choosing reliable rules from the rules identifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Visual computer 2021-02, Vol.37 (2), p.341-357
Hauptverfasser: Zhang, Huijun, Chen, Junjie, Qiang, Yan, Zhao, Juanjuan, Xu, Jiangyang, Fan, Xiaobo, Yang, Yemin, Zhang, Xiaolong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 357
container_issue 2
container_start_page 341
container_title The Visual computer
container_volume 37
creator Zhang, Huijun
Chen, Junjie
Qiang, Yan
Zhao, Juanjuan
Xu, Jiangyang
Fan, Xiaobo
Yang, Yemin
Zhang, Xiaolong
description Dynamic rule mining can discover time-dependent association rules and provide more accurate descriptions about the relationship among items at different time periods and temporal granularities. However, users still face some challenges in analyzing and choosing reliable rules from the rules identified by algorithms, because of the large number of rules, the dynamic nature of rules across different time periods and granularities and the opacity of the relationship between rules and raw data. In this paper, we present our work on the development of DART, a visual analytics system for dynamic association rule mining, to help analysts gain a better understanding of rules and algorithms. DART allows users to explore rules at different time granularities (e.g., per hour, per day, per month, etc.) and with different time periods (e.g., daily, weekly, yearly, etc.), and to examine rules at multiple levels of detail, including investigating temporal patterns of a set of rules, comparing multiple rules, and evaluating a rule with raw data. Two case studies are used to show the functions and features of DART in analyzing business data and public safety data.
doi_str_mv 10.1007/s00371-020-01803-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918027321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918027321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-d0ecabe9c469b0ebf22843a4f6cb8cb557c4773f30560ccca0923c765ed97b093</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJ0jaNt2X9hAVR1nNI03TJsk3XpJXtvzdawZunYZjnfRkehC4pXFMAcRMBuKAEGBCgJXByOEIzmnFGGKf5MZoBFSVhopSn6CzGLaRdZHKGXu8Wb-tbrPGni4PeYe31buydiTiOsbctbrqAB1_bEHvta-c3uB69bp3BOsbOON27zuMw7CxunU_3c3TS6F20F79zjt4f7tfLJ7J6eXxeLlbE8EL0pAZrdGWlyQpZga0axsqM66wpTFWaKs-FyYTgDYe8AGOMBsm4EUVuaykqkHyOrqbefeg-Bht7te2GkN6PisnkgAnOaKLYRJnQxRhso_bBtTqMioL6VqcmdSqpUz_q1CGF-BSKCfYbG_6q_0l9AXrvcqI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918027321</pqid></control><display><type>article</type><title>DART: a visual analytics system for understanding dynamic association rule mining</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Zhang, Huijun ; Chen, Junjie ; Qiang, Yan ; Zhao, Juanjuan ; Xu, Jiangyang ; Fan, Xiaobo ; Yang, Yemin ; Zhang, Xiaolong</creator><creatorcontrib>Zhang, Huijun ; Chen, Junjie ; Qiang, Yan ; Zhao, Juanjuan ; Xu, Jiangyang ; Fan, Xiaobo ; Yang, Yemin ; Zhang, Xiaolong</creatorcontrib><description>Dynamic rule mining can discover time-dependent association rules and provide more accurate descriptions about the relationship among items at different time periods and temporal granularities. However, users still face some challenges in analyzing and choosing reliable rules from the rules identified by algorithms, because of the large number of rules, the dynamic nature of rules across different time periods and granularities and the opacity of the relationship between rules and raw data. In this paper, we present our work on the development of DART, a visual analytics system for dynamic association rule mining, to help analysts gain a better understanding of rules and algorithms. DART allows users to explore rules at different time granularities (e.g., per hour, per day, per month, etc.) and with different time periods (e.g., daily, weekly, yearly, etc.), and to examine rules at multiple levels of detail, including investigating temporal patterns of a set of rules, comparing multiple rules, and evaluating a rule with raw data. Two case studies are used to show the functions and features of DART in analyzing business data and public safety data.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-020-01803-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Case studies ; Computer Graphics ; Computer Science ; Data mining ; Datasets ; Image Processing and Computer Vision ; Original Article ; Public safety ; Time dependence ; Visualization</subject><ispartof>The Visual computer, 2021-02, Vol.37 (2), p.341-357</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-d0ecabe9c469b0ebf22843a4f6cb8cb557c4773f30560ccca0923c765ed97b093</citedby><cites>FETCH-LOGICAL-c367t-d0ecabe9c469b0ebf22843a4f6cb8cb557c4773f30560ccca0923c765ed97b093</cites><orcidid>0000-0002-7775-595X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-020-01803-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918027321?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Zhang, Huijun</creatorcontrib><creatorcontrib>Chen, Junjie</creatorcontrib><creatorcontrib>Qiang, Yan</creatorcontrib><creatorcontrib>Zhao, Juanjuan</creatorcontrib><creatorcontrib>Xu, Jiangyang</creatorcontrib><creatorcontrib>Fan, Xiaobo</creatorcontrib><creatorcontrib>Yang, Yemin</creatorcontrib><creatorcontrib>Zhang, Xiaolong</creatorcontrib><title>DART: a visual analytics system for understanding dynamic association rule mining</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>Dynamic rule mining can discover time-dependent association rules and provide more accurate descriptions about the relationship among items at different time periods and temporal granularities. However, users still face some challenges in analyzing and choosing reliable rules from the rules identified by algorithms, because of the large number of rules, the dynamic nature of rules across different time periods and granularities and the opacity of the relationship between rules and raw data. In this paper, we present our work on the development of DART, a visual analytics system for dynamic association rule mining, to help analysts gain a better understanding of rules and algorithms. DART allows users to explore rules at different time granularities (e.g., per hour, per day, per month, etc.) and with different time periods (e.g., daily, weekly, yearly, etc.), and to examine rules at multiple levels of detail, including investigating temporal patterns of a set of rules, comparing multiple rules, and evaluating a rule with raw data. Two case studies are used to show the functions and features of DART in analyzing business data and public safety data.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Case studies</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Image Processing and Computer Vision</subject><subject>Original Article</subject><subject>Public safety</subject><subject>Time dependence</subject><subject>Visualization</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJ0jaNt2X9hAVR1nNI03TJsk3XpJXtvzdawZunYZjnfRkehC4pXFMAcRMBuKAEGBCgJXByOEIzmnFGGKf5MZoBFSVhopSn6CzGLaRdZHKGXu8Wb-tbrPGni4PeYe31buydiTiOsbctbrqAB1_bEHvta-c3uB69bp3BOsbOON27zuMw7CxunU_3c3TS6F20F79zjt4f7tfLJ7J6eXxeLlbE8EL0pAZrdGWlyQpZga0axsqM66wpTFWaKs-FyYTgDYe8AGOMBsm4EUVuaykqkHyOrqbefeg-Bht7te2GkN6PisnkgAnOaKLYRJnQxRhso_bBtTqMioL6VqcmdSqpUz_q1CGF-BSKCfYbG_6q_0l9AXrvcqI</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Zhang, Huijun</creator><creator>Chen, Junjie</creator><creator>Qiang, Yan</creator><creator>Zhao, Juanjuan</creator><creator>Xu, Jiangyang</creator><creator>Fan, Xiaobo</creator><creator>Yang, Yemin</creator><creator>Zhang, Xiaolong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-7775-595X</orcidid></search><sort><creationdate>20210201</creationdate><title>DART: a visual analytics system for understanding dynamic association rule mining</title><author>Zhang, Huijun ; Chen, Junjie ; Qiang, Yan ; Zhao, Juanjuan ; Xu, Jiangyang ; Fan, Xiaobo ; Yang, Yemin ; Zhang, Xiaolong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-d0ecabe9c469b0ebf22843a4f6cb8cb557c4773f30560ccca0923c765ed97b093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Case studies</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Image Processing and Computer Vision</topic><topic>Original Article</topic><topic>Public safety</topic><topic>Time dependence</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Huijun</creatorcontrib><creatorcontrib>Chen, Junjie</creatorcontrib><creatorcontrib>Qiang, Yan</creatorcontrib><creatorcontrib>Zhao, Juanjuan</creatorcontrib><creatorcontrib>Xu, Jiangyang</creatorcontrib><creatorcontrib>Fan, Xiaobo</creatorcontrib><creatorcontrib>Yang, Yemin</creatorcontrib><creatorcontrib>Zhang, Xiaolong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Huijun</au><au>Chen, Junjie</au><au>Qiang, Yan</au><au>Zhao, Juanjuan</au><au>Xu, Jiangyang</au><au>Fan, Xiaobo</au><au>Yang, Yemin</au><au>Zhang, Xiaolong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DART: a visual analytics system for understanding dynamic association rule mining</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>37</volume><issue>2</issue><spage>341</spage><epage>357</epage><pages>341-357</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>Dynamic rule mining can discover time-dependent association rules and provide more accurate descriptions about the relationship among items at different time periods and temporal granularities. However, users still face some challenges in analyzing and choosing reliable rules from the rules identified by algorithms, because of the large number of rules, the dynamic nature of rules across different time periods and granularities and the opacity of the relationship between rules and raw data. In this paper, we present our work on the development of DART, a visual analytics system for dynamic association rule mining, to help analysts gain a better understanding of rules and algorithms. DART allows users to explore rules at different time granularities (e.g., per hour, per day, per month, etc.) and with different time periods (e.g., daily, weekly, yearly, etc.), and to examine rules at multiple levels of detail, including investigating temporal patterns of a set of rules, comparing multiple rules, and evaluating a rule with raw data. Two case studies are used to show the functions and features of DART in analyzing business data and public safety data.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-020-01803-x</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7775-595X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0178-2789
ispartof The Visual computer, 2021-02, Vol.37 (2), p.341-357
issn 0178-2789
1432-2315
language eng
recordid cdi_proquest_journals_2918027321
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Artificial Intelligence
Case studies
Computer Graphics
Computer Science
Data mining
Datasets
Image Processing and Computer Vision
Original Article
Public safety
Time dependence
Visualization
title DART: a visual analytics system for understanding dynamic association rule mining
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A44%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DART:%20a%20visual%20analytics%20system%20for%20understanding%20dynamic%20association%20rule%20mining&rft.jtitle=The%20Visual%20computer&rft.au=Zhang,%20Huijun&rft.date=2021-02-01&rft.volume=37&rft.issue=2&rft.spage=341&rft.epage=357&rft.pages=341-357&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-020-01803-x&rft_dat=%3Cproquest_cross%3E2918027321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918027321&rft_id=info:pmid/&rfr_iscdi=true