DART: a visual analytics system for understanding dynamic association rule mining
Dynamic rule mining can discover time-dependent association rules and provide more accurate descriptions about the relationship among items at different time periods and temporal granularities. However, users still face some challenges in analyzing and choosing reliable rules from the rules identifi...
Gespeichert in:
Veröffentlicht in: | The Visual computer 2021-02, Vol.37 (2), p.341-357 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 357 |
---|---|
container_issue | 2 |
container_start_page | 341 |
container_title | The Visual computer |
container_volume | 37 |
creator | Zhang, Huijun Chen, Junjie Qiang, Yan Zhao, Juanjuan Xu, Jiangyang Fan, Xiaobo Yang, Yemin Zhang, Xiaolong |
description | Dynamic rule mining can discover time-dependent association rules and provide more accurate descriptions about the relationship among items at different time periods and temporal granularities. However, users still face some challenges in analyzing and choosing reliable rules from the rules identified by algorithms, because of the large number of rules, the dynamic nature of rules across different time periods and granularities and the opacity of the relationship between rules and raw data. In this paper, we present our work on the development of DART, a visual analytics system for dynamic association rule mining, to help analysts gain a better understanding of rules and algorithms. DART allows users to explore rules at different time granularities (e.g., per hour, per day, per month, etc.) and with different time periods (e.g., daily, weekly, yearly, etc.), and to examine rules at multiple levels of detail, including investigating temporal patterns of a set of rules, comparing multiple rules, and evaluating a rule with raw data. Two case studies are used to show the functions and features of DART in analyzing business data and public safety data. |
doi_str_mv | 10.1007/s00371-020-01803-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918027321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918027321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-d0ecabe9c469b0ebf22843a4f6cb8cb557c4773f30560ccca0923c765ed97b093</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJ0jaNt2X9hAVR1nNI03TJsk3XpJXtvzdawZunYZjnfRkehC4pXFMAcRMBuKAEGBCgJXByOEIzmnFGGKf5MZoBFSVhopSn6CzGLaRdZHKGXu8Wb-tbrPGni4PeYe31buydiTiOsbctbrqAB1_bEHvta-c3uB69bp3BOsbOON27zuMw7CxunU_3c3TS6F20F79zjt4f7tfLJ7J6eXxeLlbE8EL0pAZrdGWlyQpZga0axsqM66wpTFWaKs-FyYTgDYe8AGOMBsm4EUVuaykqkHyOrqbefeg-Bht7te2GkN6PisnkgAnOaKLYRJnQxRhso_bBtTqMioL6VqcmdSqpUz_q1CGF-BSKCfYbG_6q_0l9AXrvcqI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918027321</pqid></control><display><type>article</type><title>DART: a visual analytics system for understanding dynamic association rule mining</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Zhang, Huijun ; Chen, Junjie ; Qiang, Yan ; Zhao, Juanjuan ; Xu, Jiangyang ; Fan, Xiaobo ; Yang, Yemin ; Zhang, Xiaolong</creator><creatorcontrib>Zhang, Huijun ; Chen, Junjie ; Qiang, Yan ; Zhao, Juanjuan ; Xu, Jiangyang ; Fan, Xiaobo ; Yang, Yemin ; Zhang, Xiaolong</creatorcontrib><description>Dynamic rule mining can discover time-dependent association rules and provide more accurate descriptions about the relationship among items at different time periods and temporal granularities. However, users still face some challenges in analyzing and choosing reliable rules from the rules identified by algorithms, because of the large number of rules, the dynamic nature of rules across different time periods and granularities and the opacity of the relationship between rules and raw data. In this paper, we present our work on the development of DART, a visual analytics system for dynamic association rule mining, to help analysts gain a better understanding of rules and algorithms. DART allows users to explore rules at different time granularities (e.g., per hour, per day, per month, etc.) and with different time periods (e.g., daily, weekly, yearly, etc.), and to examine rules at multiple levels of detail, including investigating temporal patterns of a set of rules, comparing multiple rules, and evaluating a rule with raw data. Two case studies are used to show the functions and features of DART in analyzing business data and public safety data.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-020-01803-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Case studies ; Computer Graphics ; Computer Science ; Data mining ; Datasets ; Image Processing and Computer Vision ; Original Article ; Public safety ; Time dependence ; Visualization</subject><ispartof>The Visual computer, 2021-02, Vol.37 (2), p.341-357</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-d0ecabe9c469b0ebf22843a4f6cb8cb557c4773f30560ccca0923c765ed97b093</citedby><cites>FETCH-LOGICAL-c367t-d0ecabe9c469b0ebf22843a4f6cb8cb557c4773f30560ccca0923c765ed97b093</cites><orcidid>0000-0002-7775-595X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-020-01803-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918027321?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Zhang, Huijun</creatorcontrib><creatorcontrib>Chen, Junjie</creatorcontrib><creatorcontrib>Qiang, Yan</creatorcontrib><creatorcontrib>Zhao, Juanjuan</creatorcontrib><creatorcontrib>Xu, Jiangyang</creatorcontrib><creatorcontrib>Fan, Xiaobo</creatorcontrib><creatorcontrib>Yang, Yemin</creatorcontrib><creatorcontrib>Zhang, Xiaolong</creatorcontrib><title>DART: a visual analytics system for understanding dynamic association rule mining</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>Dynamic rule mining can discover time-dependent association rules and provide more accurate descriptions about the relationship among items at different time periods and temporal granularities. However, users still face some challenges in analyzing and choosing reliable rules from the rules identified by algorithms, because of the large number of rules, the dynamic nature of rules across different time periods and granularities and the opacity of the relationship between rules and raw data. In this paper, we present our work on the development of DART, a visual analytics system for dynamic association rule mining, to help analysts gain a better understanding of rules and algorithms. DART allows users to explore rules at different time granularities (e.g., per hour, per day, per month, etc.) and with different time periods (e.g., daily, weekly, yearly, etc.), and to examine rules at multiple levels of detail, including investigating temporal patterns of a set of rules, comparing multiple rules, and evaluating a rule with raw data. Two case studies are used to show the functions and features of DART in analyzing business data and public safety data.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Case studies</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Image Processing and Computer Vision</subject><subject>Original Article</subject><subject>Public safety</subject><subject>Time dependence</subject><subject>Visualization</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJ0jaNt2X9hAVR1nNI03TJsk3XpJXtvzdawZunYZjnfRkehC4pXFMAcRMBuKAEGBCgJXByOEIzmnFGGKf5MZoBFSVhopSn6CzGLaRdZHKGXu8Wb-tbrPGni4PeYe31buydiTiOsbctbrqAB1_bEHvta-c3uB69bp3BOsbOON27zuMw7CxunU_3c3TS6F20F79zjt4f7tfLJ7J6eXxeLlbE8EL0pAZrdGWlyQpZga0axsqM66wpTFWaKs-FyYTgDYe8AGOMBsm4EUVuaykqkHyOrqbefeg-Bht7te2GkN6PisnkgAnOaKLYRJnQxRhso_bBtTqMioL6VqcmdSqpUz_q1CGF-BSKCfYbG_6q_0l9AXrvcqI</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Zhang, Huijun</creator><creator>Chen, Junjie</creator><creator>Qiang, Yan</creator><creator>Zhao, Juanjuan</creator><creator>Xu, Jiangyang</creator><creator>Fan, Xiaobo</creator><creator>Yang, Yemin</creator><creator>Zhang, Xiaolong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-7775-595X</orcidid></search><sort><creationdate>20210201</creationdate><title>DART: a visual analytics system for understanding dynamic association rule mining</title><author>Zhang, Huijun ; Chen, Junjie ; Qiang, Yan ; Zhao, Juanjuan ; Xu, Jiangyang ; Fan, Xiaobo ; Yang, Yemin ; Zhang, Xiaolong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-d0ecabe9c469b0ebf22843a4f6cb8cb557c4773f30560ccca0923c765ed97b093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Case studies</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Image Processing and Computer Vision</topic><topic>Original Article</topic><topic>Public safety</topic><topic>Time dependence</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Huijun</creatorcontrib><creatorcontrib>Chen, Junjie</creatorcontrib><creatorcontrib>Qiang, Yan</creatorcontrib><creatorcontrib>Zhao, Juanjuan</creatorcontrib><creatorcontrib>Xu, Jiangyang</creatorcontrib><creatorcontrib>Fan, Xiaobo</creatorcontrib><creatorcontrib>Yang, Yemin</creatorcontrib><creatorcontrib>Zhang, Xiaolong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Huijun</au><au>Chen, Junjie</au><au>Qiang, Yan</au><au>Zhao, Juanjuan</au><au>Xu, Jiangyang</au><au>Fan, Xiaobo</au><au>Yang, Yemin</au><au>Zhang, Xiaolong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DART: a visual analytics system for understanding dynamic association rule mining</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>37</volume><issue>2</issue><spage>341</spage><epage>357</epage><pages>341-357</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>Dynamic rule mining can discover time-dependent association rules and provide more accurate descriptions about the relationship among items at different time periods and temporal granularities. However, users still face some challenges in analyzing and choosing reliable rules from the rules identified by algorithms, because of the large number of rules, the dynamic nature of rules across different time periods and granularities and the opacity of the relationship between rules and raw data. In this paper, we present our work on the development of DART, a visual analytics system for dynamic association rule mining, to help analysts gain a better understanding of rules and algorithms. DART allows users to explore rules at different time granularities (e.g., per hour, per day, per month, etc.) and with different time periods (e.g., daily, weekly, yearly, etc.), and to examine rules at multiple levels of detail, including investigating temporal patterns of a set of rules, comparing multiple rules, and evaluating a rule with raw data. Two case studies are used to show the functions and features of DART in analyzing business data and public safety data.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-020-01803-x</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7775-595X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-2789 |
ispartof | The Visual computer, 2021-02, Vol.37 (2), p.341-357 |
issn | 0178-2789 1432-2315 |
language | eng |
recordid | cdi_proquest_journals_2918027321 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Algorithms Artificial Intelligence Case studies Computer Graphics Computer Science Data mining Datasets Image Processing and Computer Vision Original Article Public safety Time dependence Visualization |
title | DART: a visual analytics system for understanding dynamic association rule mining |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A44%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DART:%20a%20visual%20analytics%20system%20for%20understanding%20dynamic%20association%20rule%20mining&rft.jtitle=The%20Visual%20computer&rft.au=Zhang,%20Huijun&rft.date=2021-02-01&rft.volume=37&rft.issue=2&rft.spage=341&rft.epage=357&rft.pages=341-357&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-020-01803-x&rft_dat=%3Cproquest_cross%3E2918027321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918027321&rft_id=info:pmid/&rfr_iscdi=true |