Model-Driven Deep Pipeline With Uncertainty-Aware Bundle Adjustment for Satellite Photogrammetry

Bundle adjustment (BA), a vital technology in satellite photogrammetry, directly determines the quality of geographic information mapping. However, the existing BA methods suffer from bottlenecks in the cases of limited stereo views caused by input guidance inadequacy and biased modeling. To conquer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-13
Hauptverfasser: Cao, Kailang, Li, Jiaojiao, Song, Rui, Liu, Zhiqiang, Li, Yunsong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Cao, Kailang
Li, Jiaojiao
Song, Rui
Liu, Zhiqiang
Li, Yunsong
description Bundle adjustment (BA), a vital technology in satellite photogrammetry, directly determines the quality of geographic information mapping. However, the existing BA methods suffer from bottlenecks in the cases of limited stereo views caused by input guidance inadequacy and biased modeling. To conquer these issues, a model-driven satellite photogrammetry deep pipeline (SPDP) is proposed in this article. Specifically, for the triplets of remote sensing images (RSIs), the fusion feature maps are extracted by our attention-driven multiscale feature extractor (AMFE), which emphasizes the image information and provides guidance for the subsequent multiview geometric processing. Following that, with the feature error volume as input, a dedicated feature-metric error perceptron module (FEPM) is built to infer the observation uncertainty and predict the pixel-wise compensations. Furthermore, a novel uncertainty-aware BA (UBA) is implemented to derive accurate and robust 3-D point clouds, which introduces the BA model transformation and the specialized iterative refinement to enhance the observation error elimination capability. The detailed experimental results demonstrate the feasibility and effectiveness of the proposed pipeline, which is significant for remote sensing surveys and mapping.
doi_str_mv 10.1109/TGRS.2024.3352072
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918026574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918026574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-2541d85b2798b0a0ea87255e03bc72e2715ae109a32a733d670fc0c3e174acbf3</originalsourceid><addsrcrecordid>eNotkE1PwkAURSdGExH9Ae4mcV1886bTaZcIiiYYiUBcjtP2VUr6gdOphn8vRFZ3c3Jv7mHsVsBICEjuV7P35QgBw5GUCkHjGRsIpeIAojA8ZwMQSRRgnOAlu-q6LYAIldAD9vna5lQFU1f-UMOnRDu-KHdUlQ3xj9Jv-LrJyHlbNn4fjH-tI_7QN3lFfJxv-87X1HhetI4vraeqKj3xxab17ZezdU3e7a_ZRWGrjm5OOWTrp8fV5DmYv81eJuN5kCEqH6AKRR6rFHUSp2CBbKxRKQKZZhoJtVCWDketRKulzCMNRQaZJKFDm6WFHLK7_96da7976rzZtr1rDpMGExEDRkqHB0r8U5lru85RYXaurK3bGwHmKNIcRZqjSHMSKf8AgfpmnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918026574</pqid></control><display><type>article</type><title>Model-Driven Deep Pipeline With Uncertainty-Aware Bundle Adjustment for Satellite Photogrammetry</title><source>IEEE Electronic Library (IEL)</source><creator>Cao, Kailang ; Li, Jiaojiao ; Song, Rui ; Liu, Zhiqiang ; Li, Yunsong</creator><creatorcontrib>Cao, Kailang ; Li, Jiaojiao ; Song, Rui ; Liu, Zhiqiang ; Li, Yunsong</creatorcontrib><description>Bundle adjustment (BA), a vital technology in satellite photogrammetry, directly determines the quality of geographic information mapping. However, the existing BA methods suffer from bottlenecks in the cases of limited stereo views caused by input guidance inadequacy and biased modeling. To conquer these issues, a model-driven satellite photogrammetry deep pipeline (SPDP) is proposed in this article. Specifically, for the triplets of remote sensing images (RSIs), the fusion feature maps are extracted by our attention-driven multiscale feature extractor (AMFE), which emphasizes the image information and provides guidance for the subsequent multiview geometric processing. Following that, with the feature error volume as input, a dedicated feature-metric error perceptron module (FEPM) is built to infer the observation uncertainty and predict the pixel-wise compensations. Furthermore, a novel uncertainty-aware BA (UBA) is implemented to derive accurate and robust 3-D point clouds, which introduces the BA model transformation and the specialized iterative refinement to enhance the observation error elimination capability. The detailed experimental results demonstrate the feasibility and effectiveness of the proposed pipeline, which is significant for remote sensing surveys and mapping.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3352072</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Bundle adjustment ; Errors ; Feature extraction ; Feature maps ; Iterative methods ; Mapping ; Photogrammetry ; Remote sensing ; Satellites ; Three dimensional models ; Uncertainty</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c225t-2541d85b2798b0a0ea87255e03bc72e2715ae109a32a733d670fc0c3e174acbf3</cites><orcidid>0000-0002-9093-2711 ; 0000-0002-2790-1752 ; 0000-0002-0470-9469 ; 0000-0002-0234-6270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Cao, Kailang</creatorcontrib><creatorcontrib>Li, Jiaojiao</creatorcontrib><creatorcontrib>Song, Rui</creatorcontrib><creatorcontrib>Liu, Zhiqiang</creatorcontrib><creatorcontrib>Li, Yunsong</creatorcontrib><title>Model-Driven Deep Pipeline With Uncertainty-Aware Bundle Adjustment for Satellite Photogrammetry</title><title>IEEE transactions on geoscience and remote sensing</title><description>Bundle adjustment (BA), a vital technology in satellite photogrammetry, directly determines the quality of geographic information mapping. However, the existing BA methods suffer from bottlenecks in the cases of limited stereo views caused by input guidance inadequacy and biased modeling. To conquer these issues, a model-driven satellite photogrammetry deep pipeline (SPDP) is proposed in this article. Specifically, for the triplets of remote sensing images (RSIs), the fusion feature maps are extracted by our attention-driven multiscale feature extractor (AMFE), which emphasizes the image information and provides guidance for the subsequent multiview geometric processing. Following that, with the feature error volume as input, a dedicated feature-metric error perceptron module (FEPM) is built to infer the observation uncertainty and predict the pixel-wise compensations. Furthermore, a novel uncertainty-aware BA (UBA) is implemented to derive accurate and robust 3-D point clouds, which introduces the BA model transformation and the specialized iterative refinement to enhance the observation error elimination capability. The detailed experimental results demonstrate the feasibility and effectiveness of the proposed pipeline, which is significant for remote sensing surveys and mapping.</description><subject>Bundle adjustment</subject><subject>Errors</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Iterative methods</subject><subject>Mapping</subject><subject>Photogrammetry</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>Three dimensional models</subject><subject>Uncertainty</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkE1PwkAURSdGExH9Ae4mcV1886bTaZcIiiYYiUBcjtP2VUr6gdOphn8vRFZ3c3Jv7mHsVsBICEjuV7P35QgBw5GUCkHjGRsIpeIAojA8ZwMQSRRgnOAlu-q6LYAIldAD9vna5lQFU1f-UMOnRDu-KHdUlQ3xj9Jv-LrJyHlbNn4fjH-tI_7QN3lFfJxv-87X1HhetI4vraeqKj3xxab17ZezdU3e7a_ZRWGrjm5OOWTrp8fV5DmYv81eJuN5kCEqH6AKRR6rFHUSp2CBbKxRKQKZZhoJtVCWDketRKulzCMNRQaZJKFDm6WFHLK7_96da7976rzZtr1rDpMGExEDRkqHB0r8U5lru85RYXaurK3bGwHmKNIcRZqjSHMSKf8AgfpmnA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Cao, Kailang</creator><creator>Li, Jiaojiao</creator><creator>Song, Rui</creator><creator>Liu, Zhiqiang</creator><creator>Li, Yunsong</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9093-2711</orcidid><orcidid>https://orcid.org/0000-0002-2790-1752</orcidid><orcidid>https://orcid.org/0000-0002-0470-9469</orcidid><orcidid>https://orcid.org/0000-0002-0234-6270</orcidid></search><sort><creationdate>2024</creationdate><title>Model-Driven Deep Pipeline With Uncertainty-Aware Bundle Adjustment for Satellite Photogrammetry</title><author>Cao, Kailang ; Li, Jiaojiao ; Song, Rui ; Liu, Zhiqiang ; Li, Yunsong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-2541d85b2798b0a0ea87255e03bc72e2715ae109a32a733d670fc0c3e174acbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bundle adjustment</topic><topic>Errors</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Iterative methods</topic><topic>Mapping</topic><topic>Photogrammetry</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>Three dimensional models</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Kailang</creatorcontrib><creatorcontrib>Li, Jiaojiao</creatorcontrib><creatorcontrib>Song, Rui</creatorcontrib><creatorcontrib>Liu, Zhiqiang</creatorcontrib><creatorcontrib>Li, Yunsong</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Kailang</au><au>Li, Jiaojiao</au><au>Song, Rui</au><au>Liu, Zhiqiang</au><au>Li, Yunsong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-Driven Deep Pipeline With Uncertainty-Aware Bundle Adjustment for Satellite Photogrammetry</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><abstract>Bundle adjustment (BA), a vital technology in satellite photogrammetry, directly determines the quality of geographic information mapping. However, the existing BA methods suffer from bottlenecks in the cases of limited stereo views caused by input guidance inadequacy and biased modeling. To conquer these issues, a model-driven satellite photogrammetry deep pipeline (SPDP) is proposed in this article. Specifically, for the triplets of remote sensing images (RSIs), the fusion feature maps are extracted by our attention-driven multiscale feature extractor (AMFE), which emphasizes the image information and provides guidance for the subsequent multiview geometric processing. Following that, with the feature error volume as input, a dedicated feature-metric error perceptron module (FEPM) is built to infer the observation uncertainty and predict the pixel-wise compensations. Furthermore, a novel uncertainty-aware BA (UBA) is implemented to derive accurate and robust 3-D point clouds, which introduces the BA model transformation and the specialized iterative refinement to enhance the observation error elimination capability. The detailed experimental results demonstrate the feasibility and effectiveness of the proposed pipeline, which is significant for remote sensing surveys and mapping.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TGRS.2024.3352072</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9093-2711</orcidid><orcidid>https://orcid.org/0000-0002-2790-1752</orcidid><orcidid>https://orcid.org/0000-0002-0470-9469</orcidid><orcidid>https://orcid.org/0000-0002-0234-6270</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-13
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_2918026574
source IEEE Electronic Library (IEL)
subjects Bundle adjustment
Errors
Feature extraction
Feature maps
Iterative methods
Mapping
Photogrammetry
Remote sensing
Satellites
Three dimensional models
Uncertainty
title Model-Driven Deep Pipeline With Uncertainty-Aware Bundle Adjustment for Satellite Photogrammetry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A02%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-Driven%20Deep%20Pipeline%20With%20Uncertainty-Aware%20Bundle%20Adjustment%20for%20Satellite%20Photogrammetry&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Cao,%20Kailang&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0196-2892&rft.eissn=1558-0644&rft_id=info:doi/10.1109/TGRS.2024.3352072&rft_dat=%3Cproquest_cross%3E2918026574%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918026574&rft_id=info:pmid/&rfr_iscdi=true