Monadic transductions and definable classes of matroids
A transduction provides us with a way of using the monadic second-order language of a structure to make statements about a derived structure. Any transduction induces a relation on the set of these structures. This article presents a self-contained presentation of the theory of transductions for the...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-01 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Jowett, Susan Mayhew, Dillon Mo, Songbao Tuffley, Christopher |
description | A transduction provides us with a way of using the monadic second-order language of a structure to make statements about a derived structure. Any transduction induces a relation on the set of these structures. This article presents a self-contained presentation of the theory of transductions for the monadic second-order language of matroids. This includes a proof of the matroid version of the Backwards Translation Theorem, which lifts any formula applied to the images of the transduction into a formula which we can apply to the pre-images. Applications include proofs that the class of lattice-path matroids and the class of spike-minors can be defined by sentences in monadic second-order logic. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2918025237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918025237</sourcerecordid><originalsourceid>FETCH-proquest_journals_29180252373</originalsourceid><addsrcrecordid>eNqNyrEOwiAUQFFiYmKj_QcS5yb0UaTORuPi5t48CyQ0CMqD_9fBD3C6w7kr1oCUfTcOABvWEi1CCDhoUEo2TN9SRONnXjJGMnUuPkXiGA031vmIj2D5HJDIEk-OP7Hk5A3t2NphINv-umX7y_l-unavnN7VUpmWVHP80gTHfhSgQGr53_UBNHM2CQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918025237</pqid></control><display><type>article</type><title>Monadic transductions and definable classes of matroids</title><source>Free E- Journals</source><creator>Jowett, Susan ; Mayhew, Dillon ; Mo, Songbao ; Tuffley, Christopher</creator><creatorcontrib>Jowett, Susan ; Mayhew, Dillon ; Mo, Songbao ; Tuffley, Christopher</creatorcontrib><description>A transduction provides us with a way of using the monadic second-order language of a structure to make statements about a derived structure. Any transduction induces a relation on the set of these structures. This article presents a self-contained presentation of the theory of transductions for the monadic second-order language of matroids. This includes a proof of the matroid version of the Backwards Translation Theorem, which lifts any formula applied to the images of the transduction into a formula which we can apply to the pre-images. Applications include proofs that the class of lattice-path matroids and the class of spike-minors can be defined by sentences in monadic second-order logic.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><ispartof>arXiv.org, 2024-01</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Jowett, Susan</creatorcontrib><creatorcontrib>Mayhew, Dillon</creatorcontrib><creatorcontrib>Mo, Songbao</creatorcontrib><creatorcontrib>Tuffley, Christopher</creatorcontrib><title>Monadic transductions and definable classes of matroids</title><title>arXiv.org</title><description>A transduction provides us with a way of using the monadic second-order language of a structure to make statements about a derived structure. Any transduction induces a relation on the set of these structures. This article presents a self-contained presentation of the theory of transductions for the monadic second-order language of matroids. This includes a proof of the matroid version of the Backwards Translation Theorem, which lifts any formula applied to the images of the transduction into a formula which we can apply to the pre-images. Applications include proofs that the class of lattice-path matroids and the class of spike-minors can be defined by sentences in monadic second-order logic.</description><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEOwiAUQFFiYmKj_QcS5yb0UaTORuPi5t48CyQ0CMqD_9fBD3C6w7kr1oCUfTcOABvWEi1CCDhoUEo2TN9SRONnXjJGMnUuPkXiGA031vmIj2D5HJDIEk-OP7Hk5A3t2NphINv-umX7y_l-unavnN7VUpmWVHP80gTHfhSgQGr53_UBNHM2CQ</recordid><startdate>20240123</startdate><enddate>20240123</enddate><creator>Jowett, Susan</creator><creator>Mayhew, Dillon</creator><creator>Mo, Songbao</creator><creator>Tuffley, Christopher</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240123</creationdate><title>Monadic transductions and definable classes of matroids</title><author>Jowett, Susan ; Mayhew, Dillon ; Mo, Songbao ; Tuffley, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29180252373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Jowett, Susan</creatorcontrib><creatorcontrib>Mayhew, Dillon</creatorcontrib><creatorcontrib>Mo, Songbao</creatorcontrib><creatorcontrib>Tuffley, Christopher</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jowett, Susan</au><au>Mayhew, Dillon</au><au>Mo, Songbao</au><au>Tuffley, Christopher</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Monadic transductions and definable classes of matroids</atitle><jtitle>arXiv.org</jtitle><date>2024-01-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>A transduction provides us with a way of using the monadic second-order language of a structure to make statements about a derived structure. Any transduction induces a relation on the set of these structures. This article presents a self-contained presentation of the theory of transductions for the monadic second-order language of matroids. This includes a proof of the matroid version of the Backwards Translation Theorem, which lifts any formula applied to the images of the transduction into a formula which we can apply to the pre-images. Applications include proofs that the class of lattice-path matroids and the class of spike-minors can be defined by sentences in monadic second-order logic.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2918025237 |
source | Free E- Journals |
title | Monadic transductions and definable classes of matroids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A56%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Monadic%20transductions%20and%20definable%20classes%20of%20matroids&rft.jtitle=arXiv.org&rft.au=Jowett,%20Susan&rft.date=2024-01-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2918025237%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918025237&rft_id=info:pmid/&rfr_iscdi=true |