Instance-level 3D shape retrieval from a single image by hybrid-representation-assisted joint embedding

We present a novel and effective joint embedding approach for retrieving the most similar 3D shape for a single image query. Our approach builds upon hybrid 3D representations—the octree-based representation and the multi-view image representation, which characterize shape geometry in different ways...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Visual computer 2021-07, Vol.37 (7), p.1743-1756
Hauptverfasser: Zou, Qian-Fang, Liu, Ligang, Liu, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1756
container_issue 7
container_start_page 1743
container_title The Visual computer
container_volume 37
creator Zou, Qian-Fang
Liu, Ligang
Liu, Yang
description We present a novel and effective joint embedding approach for retrieving the most similar 3D shape for a single image query. Our approach builds upon hybrid 3D representations—the octree-based representation and the multi-view image representation, which characterize shape geometry in different ways. We first pre-train a 3D feature space via jointly embedding 3D shapes with hybrid representations and then introduce a transform layer and an image encoder to map both shape codes and real images into a common space via a second joint embedding. Our pre-training benefits from the hybrid representation of 3D shapes and builds a more discriminative 3D shape space than using any one of 3D representations only. The transform layer helps to mind the gap between the 3D shape space and the real image space. We validate the efficacy of our method on the instance-level single-image 3D retrieval task and achieve significant improvements over existing methods.
doi_str_mv 10.1007/s00371-020-01935-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918024028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918024028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6237550b3e6079178c792a2c41c7e1297e66514429f542c297d01ce4fecfb4de3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9HJR5vmKOsnLHjRc0jTabdLt61Jd2H_vdEK3jwNM7zPOzMvIdccbjmAvosAUnMGAhhwIzMGJ2TBlRRMSJ6dkgVwXTChC3NOLmLcQuq1MgvSvPZxcr1H1uEBOyofaNy4EWnAKbR4cB2tw7Cjjsa2bzqk7c41SMsj3RzL0FYs4BgwYj-5qR165mJs44QV3Q5tP1HclVhVibwkZ7XrIl791iX5eHp8X72w9dvz6-p-zbzkZmK5kDrLoJSYgzbpZq-NcMIr7jVyYTTmecaVEqbOlPBpUAH3qGr0dakqlEtyM_uOYfjcY5zsdtiHPq20wvAChAJRJJWYVT4MMQas7RjSY-FoOdjvQO0cqE2B2p9ALSRIzlBM4r7B8Gf9D_UF62p4ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918024028</pqid></control><display><type>article</type><title>Instance-level 3D shape retrieval from a single image by hybrid-representation-assisted joint embedding</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Zou, Qian-Fang ; Liu, Ligang ; Liu, Yang</creator><creatorcontrib>Zou, Qian-Fang ; Liu, Ligang ; Liu, Yang</creatorcontrib><description>We present a novel and effective joint embedding approach for retrieving the most similar 3D shape for a single image query. Our approach builds upon hybrid 3D representations—the octree-based representation and the multi-view image representation, which characterize shape geometry in different ways. We first pre-train a 3D feature space via jointly embedding 3D shapes with hybrid representations and then introduce a transform layer and an image encoder to map both shape codes and real images into a common space via a second joint embedding. Our pre-training benefits from the hybrid representation of 3D shapes and builds a more discriminative 3D shape space than using any one of 3D representations only. The transform layer helps to mind the gap between the 3D shape space and the real image space. We validate the efficacy of our method on the instance-level single-image 3D retrieval task and achieve significant improvements over existing methods.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-020-01935-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Artificial Intelligence ; Computer Graphics ; Computer Science ; Datasets ; Embedding ; Geometry ; Image Processing and Computer Vision ; Learning ; Neural networks ; Octrees ; Original Article ; Queries ; Representations ; Retrieval ; Search engines ; Shape recognition</subject><ispartof>The Visual computer, 2021-07, Vol.37 (7), p.1743-1756</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6237550b3e6079178c792a2c41c7e1297e66514429f542c297d01ce4fecfb4de3</citedby><cites>FETCH-LOGICAL-c319t-6237550b3e6079178c792a2c41c7e1297e66514429f542c297d01ce4fecfb4de3</cites><orcidid>0000-0002-3768-6654</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-020-01935-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918024028?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Zou, Qian-Fang</creatorcontrib><creatorcontrib>Liu, Ligang</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><title>Instance-level 3D shape retrieval from a single image by hybrid-representation-assisted joint embedding</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>We present a novel and effective joint embedding approach for retrieving the most similar 3D shape for a single image query. Our approach builds upon hybrid 3D representations—the octree-based representation and the multi-view image representation, which characterize shape geometry in different ways. We first pre-train a 3D feature space via jointly embedding 3D shapes with hybrid representations and then introduce a transform layer and an image encoder to map both shape codes and real images into a common space via a second joint embedding. Our pre-training benefits from the hybrid representation of 3D shapes and builds a more discriminative 3D shape space than using any one of 3D representations only. The transform layer helps to mind the gap between the 3D shape space and the real image space. We validate the efficacy of our method on the instance-level single-image 3D retrieval task and achieve significant improvements over existing methods.</description><subject>Accuracy</subject><subject>Artificial Intelligence</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Embedding</subject><subject>Geometry</subject><subject>Image Processing and Computer Vision</subject><subject>Learning</subject><subject>Neural networks</subject><subject>Octrees</subject><subject>Original Article</subject><subject>Queries</subject><subject>Representations</subject><subject>Retrieval</subject><subject>Search engines</subject><subject>Shape recognition</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9HJR5vmKOsnLHjRc0jTabdLt61Jd2H_vdEK3jwNM7zPOzMvIdccbjmAvosAUnMGAhhwIzMGJ2TBlRRMSJ6dkgVwXTChC3NOLmLcQuq1MgvSvPZxcr1H1uEBOyofaNy4EWnAKbR4cB2tw7Cjjsa2bzqk7c41SMsj3RzL0FYs4BgwYj-5qR165mJs44QV3Q5tP1HclVhVibwkZ7XrIl791iX5eHp8X72w9dvz6-p-zbzkZmK5kDrLoJSYgzbpZq-NcMIr7jVyYTTmecaVEqbOlPBpUAH3qGr0dakqlEtyM_uOYfjcY5zsdtiHPq20wvAChAJRJJWYVT4MMQas7RjSY-FoOdjvQO0cqE2B2p9ALSRIzlBM4r7B8Gf9D_UF62p4ww</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Zou, Qian-Fang</creator><creator>Liu, Ligang</creator><creator>Liu, Yang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-3768-6654</orcidid></search><sort><creationdate>20210701</creationdate><title>Instance-level 3D shape retrieval from a single image by hybrid-representation-assisted joint embedding</title><author>Zou, Qian-Fang ; Liu, Ligang ; Liu, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6237550b3e6079178c792a2c41c7e1297e66514429f542c297d01ce4fecfb4de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Artificial Intelligence</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Embedding</topic><topic>Geometry</topic><topic>Image Processing and Computer Vision</topic><topic>Learning</topic><topic>Neural networks</topic><topic>Octrees</topic><topic>Original Article</topic><topic>Queries</topic><topic>Representations</topic><topic>Retrieval</topic><topic>Search engines</topic><topic>Shape recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Qian-Fang</creatorcontrib><creatorcontrib>Liu, Ligang</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Qian-Fang</au><au>Liu, Ligang</au><au>Liu, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instance-level 3D shape retrieval from a single image by hybrid-representation-assisted joint embedding</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>37</volume><issue>7</issue><spage>1743</spage><epage>1756</epage><pages>1743-1756</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>We present a novel and effective joint embedding approach for retrieving the most similar 3D shape for a single image query. Our approach builds upon hybrid 3D representations—the octree-based representation and the multi-view image representation, which characterize shape geometry in different ways. We first pre-train a 3D feature space via jointly embedding 3D shapes with hybrid representations and then introduce a transform layer and an image encoder to map both shape codes and real images into a common space via a second joint embedding. Our pre-training benefits from the hybrid representation of 3D shapes and builds a more discriminative 3D shape space than using any one of 3D representations only. The transform layer helps to mind the gap between the 3D shape space and the real image space. We validate the efficacy of our method on the instance-level single-image 3D retrieval task and achieve significant improvements over existing methods.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-020-01935-0</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3768-6654</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0178-2789
ispartof The Visual computer, 2021-07, Vol.37 (7), p.1743-1756
issn 0178-2789
1432-2315
language eng
recordid cdi_proquest_journals_2918024028
source SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Accuracy
Artificial Intelligence
Computer Graphics
Computer Science
Datasets
Embedding
Geometry
Image Processing and Computer Vision
Learning
Neural networks
Octrees
Original Article
Queries
Representations
Retrieval
Search engines
Shape recognition
title Instance-level 3D shape retrieval from a single image by hybrid-representation-assisted joint embedding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A15%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instance-level%203D%20shape%20retrieval%20from%20a%20single%20image%20by%20hybrid-representation-assisted%20joint%20embedding&rft.jtitle=The%20Visual%20computer&rft.au=Zou,%20Qian-Fang&rft.date=2021-07-01&rft.volume=37&rft.issue=7&rft.spage=1743&rft.epage=1756&rft.pages=1743-1756&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-020-01935-0&rft_dat=%3Cproquest_cross%3E2918024028%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918024028&rft_id=info:pmid/&rfr_iscdi=true