Instance-level 3D shape retrieval from a single image by hybrid-representation-assisted joint embedding
We present a novel and effective joint embedding approach for retrieving the most similar 3D shape for a single image query. Our approach builds upon hybrid 3D representations—the octree-based representation and the multi-view image representation, which characterize shape geometry in different ways...
Gespeichert in:
Veröffentlicht in: | The Visual computer 2021-07, Vol.37 (7), p.1743-1756 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1756 |
---|---|
container_issue | 7 |
container_start_page | 1743 |
container_title | The Visual computer |
container_volume | 37 |
creator | Zou, Qian-Fang Liu, Ligang Liu, Yang |
description | We present a novel and effective joint embedding approach for retrieving the most similar 3D shape for a single image query. Our approach builds upon hybrid 3D representations—the octree-based representation and the multi-view image representation, which characterize shape geometry in different ways. We first pre-train a 3D feature space via jointly embedding 3D shapes with hybrid representations and then introduce a transform layer and an image encoder to map both shape codes and real images into a common space via a second joint embedding. Our pre-training benefits from the hybrid representation of 3D shapes and builds a more discriminative 3D shape space than using any one of 3D representations only. The transform layer helps to mind the gap between the 3D shape space and the real image space. We validate the efficacy of our method on the instance-level single-image 3D retrieval task and achieve significant improvements over existing methods. |
doi_str_mv | 10.1007/s00371-020-01935-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918024028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918024028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6237550b3e6079178c792a2c41c7e1297e66514429f542c297d01ce4fecfb4de3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9HJR5vmKOsnLHjRc0jTabdLt61Jd2H_vdEK3jwNM7zPOzMvIdccbjmAvosAUnMGAhhwIzMGJ2TBlRRMSJ6dkgVwXTChC3NOLmLcQuq1MgvSvPZxcr1H1uEBOyofaNy4EWnAKbR4cB2tw7Cjjsa2bzqk7c41SMsj3RzL0FYs4BgwYj-5qR165mJs44QV3Q5tP1HclVhVibwkZ7XrIl791iX5eHp8X72w9dvz6-p-zbzkZmK5kDrLoJSYgzbpZq-NcMIr7jVyYTTmecaVEqbOlPBpUAH3qGr0dakqlEtyM_uOYfjcY5zsdtiHPq20wvAChAJRJJWYVT4MMQas7RjSY-FoOdjvQO0cqE2B2p9ALSRIzlBM4r7B8Gf9D_UF62p4ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918024028</pqid></control><display><type>article</type><title>Instance-level 3D shape retrieval from a single image by hybrid-representation-assisted joint embedding</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Zou, Qian-Fang ; Liu, Ligang ; Liu, Yang</creator><creatorcontrib>Zou, Qian-Fang ; Liu, Ligang ; Liu, Yang</creatorcontrib><description>We present a novel and effective joint embedding approach for retrieving the most similar 3D shape for a single image query. Our approach builds upon hybrid 3D representations—the octree-based representation and the multi-view image representation, which characterize shape geometry in different ways. We first pre-train a 3D feature space via jointly embedding 3D shapes with hybrid representations and then introduce a transform layer and an image encoder to map both shape codes and real images into a common space via a second joint embedding. Our pre-training benefits from the hybrid representation of 3D shapes and builds a more discriminative 3D shape space than using any one of 3D representations only. The transform layer helps to mind the gap between the 3D shape space and the real image space. We validate the efficacy of our method on the instance-level single-image 3D retrieval task and achieve significant improvements over existing methods.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-020-01935-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Artificial Intelligence ; Computer Graphics ; Computer Science ; Datasets ; Embedding ; Geometry ; Image Processing and Computer Vision ; Learning ; Neural networks ; Octrees ; Original Article ; Queries ; Representations ; Retrieval ; Search engines ; Shape recognition</subject><ispartof>The Visual computer, 2021-07, Vol.37 (7), p.1743-1756</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6237550b3e6079178c792a2c41c7e1297e66514429f542c297d01ce4fecfb4de3</citedby><cites>FETCH-LOGICAL-c319t-6237550b3e6079178c792a2c41c7e1297e66514429f542c297d01ce4fecfb4de3</cites><orcidid>0000-0002-3768-6654</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-020-01935-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918024028?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Zou, Qian-Fang</creatorcontrib><creatorcontrib>Liu, Ligang</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><title>Instance-level 3D shape retrieval from a single image by hybrid-representation-assisted joint embedding</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>We present a novel and effective joint embedding approach for retrieving the most similar 3D shape for a single image query. Our approach builds upon hybrid 3D representations—the octree-based representation and the multi-view image representation, which characterize shape geometry in different ways. We first pre-train a 3D feature space via jointly embedding 3D shapes with hybrid representations and then introduce a transform layer and an image encoder to map both shape codes and real images into a common space via a second joint embedding. Our pre-training benefits from the hybrid representation of 3D shapes and builds a more discriminative 3D shape space than using any one of 3D representations only. The transform layer helps to mind the gap between the 3D shape space and the real image space. We validate the efficacy of our method on the instance-level single-image 3D retrieval task and achieve significant improvements over existing methods.</description><subject>Accuracy</subject><subject>Artificial Intelligence</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Embedding</subject><subject>Geometry</subject><subject>Image Processing and Computer Vision</subject><subject>Learning</subject><subject>Neural networks</subject><subject>Octrees</subject><subject>Original Article</subject><subject>Queries</subject><subject>Representations</subject><subject>Retrieval</subject><subject>Search engines</subject><subject>Shape recognition</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9HJR5vmKOsnLHjRc0jTabdLt61Jd2H_vdEK3jwNM7zPOzMvIdccbjmAvosAUnMGAhhwIzMGJ2TBlRRMSJ6dkgVwXTChC3NOLmLcQuq1MgvSvPZxcr1H1uEBOyofaNy4EWnAKbR4cB2tw7Cjjsa2bzqk7c41SMsj3RzL0FYs4BgwYj-5qR165mJs44QV3Q5tP1HclVhVibwkZ7XrIl791iX5eHp8X72w9dvz6-p-zbzkZmK5kDrLoJSYgzbpZq-NcMIr7jVyYTTmecaVEqbOlPBpUAH3qGr0dakqlEtyM_uOYfjcY5zsdtiHPq20wvAChAJRJJWYVT4MMQas7RjSY-FoOdjvQO0cqE2B2p9ALSRIzlBM4r7B8Gf9D_UF62p4ww</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Zou, Qian-Fang</creator><creator>Liu, Ligang</creator><creator>Liu, Yang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-3768-6654</orcidid></search><sort><creationdate>20210701</creationdate><title>Instance-level 3D shape retrieval from a single image by hybrid-representation-assisted joint embedding</title><author>Zou, Qian-Fang ; Liu, Ligang ; Liu, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6237550b3e6079178c792a2c41c7e1297e66514429f542c297d01ce4fecfb4de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Artificial Intelligence</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Embedding</topic><topic>Geometry</topic><topic>Image Processing and Computer Vision</topic><topic>Learning</topic><topic>Neural networks</topic><topic>Octrees</topic><topic>Original Article</topic><topic>Queries</topic><topic>Representations</topic><topic>Retrieval</topic><topic>Search engines</topic><topic>Shape recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Qian-Fang</creatorcontrib><creatorcontrib>Liu, Ligang</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Qian-Fang</au><au>Liu, Ligang</au><au>Liu, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instance-level 3D shape retrieval from a single image by hybrid-representation-assisted joint embedding</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>37</volume><issue>7</issue><spage>1743</spage><epage>1756</epage><pages>1743-1756</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>We present a novel and effective joint embedding approach for retrieving the most similar 3D shape for a single image query. Our approach builds upon hybrid 3D representations—the octree-based representation and the multi-view image representation, which characterize shape geometry in different ways. We first pre-train a 3D feature space via jointly embedding 3D shapes with hybrid representations and then introduce a transform layer and an image encoder to map both shape codes and real images into a common space via a second joint embedding. Our pre-training benefits from the hybrid representation of 3D shapes and builds a more discriminative 3D shape space than using any one of 3D representations only. The transform layer helps to mind the gap between the 3D shape space and the real image space. We validate the efficacy of our method on the instance-level single-image 3D retrieval task and achieve significant improvements over existing methods.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-020-01935-0</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3768-6654</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-2789 |
ispartof | The Visual computer, 2021-07, Vol.37 (7), p.1743-1756 |
issn | 0178-2789 1432-2315 |
language | eng |
recordid | cdi_proquest_journals_2918024028 |
source | SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Accuracy Artificial Intelligence Computer Graphics Computer Science Datasets Embedding Geometry Image Processing and Computer Vision Learning Neural networks Octrees Original Article Queries Representations Retrieval Search engines Shape recognition |
title | Instance-level 3D shape retrieval from a single image by hybrid-representation-assisted joint embedding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A15%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instance-level%203D%20shape%20retrieval%20from%20a%20single%20image%20by%20hybrid-representation-assisted%20joint%20embedding&rft.jtitle=The%20Visual%20computer&rft.au=Zou,%20Qian-Fang&rft.date=2021-07-01&rft.volume=37&rft.issue=7&rft.spage=1743&rft.epage=1756&rft.pages=1743-1756&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-020-01935-0&rft_dat=%3Cproquest_cross%3E2918024028%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918024028&rft_id=info:pmid/&rfr_iscdi=true |