Multi-view Pixel2Mesh++: 3D reconstruction via Pixel2Mesh with more images

To meet the increasing demand for high-quality 3D models, we propose an end-to-end deep learning network architecture, which can generate 3D mesh models with multiple RGB images and is different from previous methods which generate voxel or point cloud models. Unlike the single-image-based pixel2mes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Visual computer 2023-10, Vol.39 (10), p.5153-5166
Hauptverfasser: Chen, Rongshan, Yin, Xiang, Yang, Yuancheng, Tong, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5166
container_issue 10
container_start_page 5153
container_title The Visual computer
container_volume 39
creator Chen, Rongshan
Yin, Xiang
Yang, Yuancheng
Tong, Chao
description To meet the increasing demand for high-quality 3D models, we propose an end-to-end deep learning network architecture, which can generate 3D mesh models with multiple RGB images and is different from previous methods which generate voxel or point cloud models. Unlike the single-image-based pixel2mesh network, we introduce the ConvLSTM layer to fuse perceptual features, making it possible to process multiple images simultaneously. To constrain the smoothness of 3D shapes, we design a graph pooling layer to reduce mesh structure and define a new loss function—Smooth loss. Collaborating with the graph unpooling layer in Pixel2Mesh (P2M), the graph pooling layer guarantees the mesh topology of the final 3D shapes generated. The application of Smooth loss ensures the visual appeal and structural accuracy of 3D shapes generated. Our experiments on ShapeNet dataset show that our method, compared with previous deep learning networks, can generate higher-precision 3D shapes and achieves the best on F -score and CD. In addition, due to the introduction of fusion features from multiple images, our experimental results are more convincing and credible.
doi_str_mv 10.1007/s00371-022-02651-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917987665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917987665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-3f4b1d76775bf0f6aacfd4fb4b033600e620beb1d5125282b171f69d34ccb5f13</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAY4lOkk2y603qNy160HPYpEm7pd2tyW6r_97oCnryMAwDzzszPAidUjinAOoiAnBFCTCWSgpK1B4a0IwzwjgV-2gAVOWEqbw4REcxLiHNKisG6HHardqKbCu3w8_Vu1uxqYuL0egS82scnG3q2IbOtlVT421V_mHwrmoXeN0Eh6t1OXfxGB34chXdyU8fotfbm5fxPZk83T2MrybEMgUt4T4zdKakUsJ48LIsrZ9l3mQGOJcATjIwLiGCMsFyZqiiXhYznllrhKd8iM76vZvQvHUutnrZdKFOJzUrqCpyJaVIFOspG5oYg_N6E9Kf4UNT0F_OdO9MJ2f625lWKcT7UExwPXfhd_U_qU_Pnm3L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917987665</pqid></control><display><type>article</type><title>Multi-view Pixel2Mesh++: 3D reconstruction via Pixel2Mesh with more images</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Chen, Rongshan ; Yin, Xiang ; Yang, Yuancheng ; Tong, Chao</creator><creatorcontrib>Chen, Rongshan ; Yin, Xiang ; Yang, Yuancheng ; Tong, Chao</creatorcontrib><description>To meet the increasing demand for high-quality 3D models, we propose an end-to-end deep learning network architecture, which can generate 3D mesh models with multiple RGB images and is different from previous methods which generate voxel or point cloud models. Unlike the single-image-based pixel2mesh network, we introduce the ConvLSTM layer to fuse perceptual features, making it possible to process multiple images simultaneously. To constrain the smoothness of 3D shapes, we design a graph pooling layer to reduce mesh structure and define a new loss function—Smooth loss. Collaborating with the graph unpooling layer in Pixel2Mesh (P2M), the graph pooling layer guarantees the mesh topology of the final 3D shapes generated. The application of Smooth loss ensures the visual appeal and structural accuracy of 3D shapes generated. Our experiments on ShapeNet dataset show that our method, compared with previous deep learning networks, can generate higher-precision 3D shapes and achieves the best on F -score and CD. In addition, due to the introduction of fusion features from multiple images, our experimental results are more convincing and credible.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-022-02651-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Cameras ; Color imagery ; Computer Graphics ; Computer Science ; Deep learning ; Finite element method ; Image Processing and Computer Vision ; Image reconstruction ; Mesh generation ; Methods ; Neural networks ; Original Article ; Smoothness ; Three dimensional models ; Topology</subject><ispartof>The Visual computer, 2023-10, Vol.39 (10), p.5153-5166</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-3f4b1d76775bf0f6aacfd4fb4b033600e620beb1d5125282b171f69d34ccb5f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-022-02651-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917987665?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51298,64362,64366,72216</link.rule.ids></links><search><creatorcontrib>Chen, Rongshan</creatorcontrib><creatorcontrib>Yin, Xiang</creatorcontrib><creatorcontrib>Yang, Yuancheng</creatorcontrib><creatorcontrib>Tong, Chao</creatorcontrib><title>Multi-view Pixel2Mesh++: 3D reconstruction via Pixel2Mesh with more images</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>To meet the increasing demand for high-quality 3D models, we propose an end-to-end deep learning network architecture, which can generate 3D mesh models with multiple RGB images and is different from previous methods which generate voxel or point cloud models. Unlike the single-image-based pixel2mesh network, we introduce the ConvLSTM layer to fuse perceptual features, making it possible to process multiple images simultaneously. To constrain the smoothness of 3D shapes, we design a graph pooling layer to reduce mesh structure and define a new loss function—Smooth loss. Collaborating with the graph unpooling layer in Pixel2Mesh (P2M), the graph pooling layer guarantees the mesh topology of the final 3D shapes generated. The application of Smooth loss ensures the visual appeal and structural accuracy of 3D shapes generated. Our experiments on ShapeNet dataset show that our method, compared with previous deep learning networks, can generate higher-precision 3D shapes and achieves the best on F -score and CD. In addition, due to the introduction of fusion features from multiple images, our experimental results are more convincing and credible.</description><subject>Artificial Intelligence</subject><subject>Cameras</subject><subject>Color imagery</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Deep learning</subject><subject>Finite element method</subject><subject>Image Processing and Computer Vision</subject><subject>Image reconstruction</subject><subject>Mesh generation</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Smoothness</subject><subject>Three dimensional models</subject><subject>Topology</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAY4lOkk2y603qNy160HPYpEm7pd2tyW6r_97oCnryMAwDzzszPAidUjinAOoiAnBFCTCWSgpK1B4a0IwzwjgV-2gAVOWEqbw4REcxLiHNKisG6HHardqKbCu3w8_Vu1uxqYuL0egS82scnG3q2IbOtlVT421V_mHwrmoXeN0Eh6t1OXfxGB34chXdyU8fotfbm5fxPZk83T2MrybEMgUt4T4zdKakUsJ48LIsrZ9l3mQGOJcATjIwLiGCMsFyZqiiXhYznllrhKd8iM76vZvQvHUutnrZdKFOJzUrqCpyJaVIFOspG5oYg_N6E9Kf4UNT0F_OdO9MJ2f625lWKcT7UExwPXfhd_U_qU_Pnm3L</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Chen, Rongshan</creator><creator>Yin, Xiang</creator><creator>Yang, Yuancheng</creator><creator>Tong, Chao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20231001</creationdate><title>Multi-view Pixel2Mesh++: 3D reconstruction via Pixel2Mesh with more images</title><author>Chen, Rongshan ; Yin, Xiang ; Yang, Yuancheng ; Tong, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-3f4b1d76775bf0f6aacfd4fb4b033600e620beb1d5125282b171f69d34ccb5f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Cameras</topic><topic>Color imagery</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Deep learning</topic><topic>Finite element method</topic><topic>Image Processing and Computer Vision</topic><topic>Image reconstruction</topic><topic>Mesh generation</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Smoothness</topic><topic>Three dimensional models</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Rongshan</creatorcontrib><creatorcontrib>Yin, Xiang</creatorcontrib><creatorcontrib>Yang, Yuancheng</creatorcontrib><creatorcontrib>Tong, Chao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Rongshan</au><au>Yin, Xiang</au><au>Yang, Yuancheng</au><au>Tong, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-view Pixel2Mesh++: 3D reconstruction via Pixel2Mesh with more images</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>39</volume><issue>10</issue><spage>5153</spage><epage>5166</epage><pages>5153-5166</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>To meet the increasing demand for high-quality 3D models, we propose an end-to-end deep learning network architecture, which can generate 3D mesh models with multiple RGB images and is different from previous methods which generate voxel or point cloud models. Unlike the single-image-based pixel2mesh network, we introduce the ConvLSTM layer to fuse perceptual features, making it possible to process multiple images simultaneously. To constrain the smoothness of 3D shapes, we design a graph pooling layer to reduce mesh structure and define a new loss function—Smooth loss. Collaborating with the graph unpooling layer in Pixel2Mesh (P2M), the graph pooling layer guarantees the mesh topology of the final 3D shapes generated. The application of Smooth loss ensures the visual appeal and structural accuracy of 3D shapes generated. Our experiments on ShapeNet dataset show that our method, compared with previous deep learning networks, can generate higher-precision 3D shapes and achieves the best on F -score and CD. In addition, due to the introduction of fusion features from multiple images, our experimental results are more convincing and credible.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-022-02651-7</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-2789
ispartof The Visual computer, 2023-10, Vol.39 (10), p.5153-5166
issn 0178-2789
1432-2315
language eng
recordid cdi_proquest_journals_2917987665
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Artificial Intelligence
Cameras
Color imagery
Computer Graphics
Computer Science
Deep learning
Finite element method
Image Processing and Computer Vision
Image reconstruction
Mesh generation
Methods
Neural networks
Original Article
Smoothness
Three dimensional models
Topology
title Multi-view Pixel2Mesh++: 3D reconstruction via Pixel2Mesh with more images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A01%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-view%20Pixel2Mesh++:%203D%20reconstruction%20via%20Pixel2Mesh%20with%20more%20images&rft.jtitle=The%20Visual%20computer&rft.au=Chen,%20Rongshan&rft.date=2023-10-01&rft.volume=39&rft.issue=10&rft.spage=5153&rft.epage=5166&rft.pages=5153-5166&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-022-02651-7&rft_dat=%3Cproquest_cross%3E2917987665%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917987665&rft_id=info:pmid/&rfr_iscdi=true