Multi-view Pixel2Mesh++: 3D reconstruction via Pixel2Mesh with more images
To meet the increasing demand for high-quality 3D models, we propose an end-to-end deep learning network architecture, which can generate 3D mesh models with multiple RGB images and is different from previous methods which generate voxel or point cloud models. Unlike the single-image-based pixel2mes...
Gespeichert in:
Veröffentlicht in: | The Visual computer 2023-10, Vol.39 (10), p.5153-5166 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5166 |
---|---|
container_issue | 10 |
container_start_page | 5153 |
container_title | The Visual computer |
container_volume | 39 |
creator | Chen, Rongshan Yin, Xiang Yang, Yuancheng Tong, Chao |
description | To meet the increasing demand for high-quality 3D models, we propose an end-to-end deep learning network architecture, which can generate 3D mesh models with multiple RGB images and is different from previous methods which generate voxel or point cloud models. Unlike the single-image-based pixel2mesh network, we introduce the ConvLSTM layer to fuse perceptual features, making it possible to process multiple images simultaneously. To constrain the smoothness of 3D shapes, we design a graph pooling layer to reduce mesh structure and define a new loss function—Smooth loss. Collaborating with the graph unpooling layer in Pixel2Mesh (P2M), the graph pooling layer guarantees the mesh topology of the final 3D shapes generated. The application of Smooth loss ensures the visual appeal and structural accuracy of 3D shapes generated. Our experiments on ShapeNet dataset show that our method, compared with previous deep learning networks, can generate higher-precision 3D shapes and achieves the best on
F
-score and CD. In addition, due to the introduction of fusion features from multiple images, our experimental results are more convincing and credible. |
doi_str_mv | 10.1007/s00371-022-02651-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917987665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917987665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-3f4b1d76775bf0f6aacfd4fb4b033600e620beb1d5125282b171f69d34ccb5f13</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAY4lOkk2y603qNy160HPYpEm7pd2tyW6r_97oCnryMAwDzzszPAidUjinAOoiAnBFCTCWSgpK1B4a0IwzwjgV-2gAVOWEqbw4REcxLiHNKisG6HHardqKbCu3w8_Vu1uxqYuL0egS82scnG3q2IbOtlVT421V_mHwrmoXeN0Eh6t1OXfxGB34chXdyU8fotfbm5fxPZk83T2MrybEMgUt4T4zdKakUsJ48LIsrZ9l3mQGOJcATjIwLiGCMsFyZqiiXhYznllrhKd8iM76vZvQvHUutnrZdKFOJzUrqCpyJaVIFOspG5oYg_N6E9Kf4UNT0F_OdO9MJ2f625lWKcT7UExwPXfhd_U_qU_Pnm3L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917987665</pqid></control><display><type>article</type><title>Multi-view Pixel2Mesh++: 3D reconstruction via Pixel2Mesh with more images</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Chen, Rongshan ; Yin, Xiang ; Yang, Yuancheng ; Tong, Chao</creator><creatorcontrib>Chen, Rongshan ; Yin, Xiang ; Yang, Yuancheng ; Tong, Chao</creatorcontrib><description>To meet the increasing demand for high-quality 3D models, we propose an end-to-end deep learning network architecture, which can generate 3D mesh models with multiple RGB images and is different from previous methods which generate voxel or point cloud models. Unlike the single-image-based pixel2mesh network, we introduce the ConvLSTM layer to fuse perceptual features, making it possible to process multiple images simultaneously. To constrain the smoothness of 3D shapes, we design a graph pooling layer to reduce mesh structure and define a new loss function—Smooth loss. Collaborating with the graph unpooling layer in Pixel2Mesh (P2M), the graph pooling layer guarantees the mesh topology of the final 3D shapes generated. The application of Smooth loss ensures the visual appeal and structural accuracy of 3D shapes generated. Our experiments on ShapeNet dataset show that our method, compared with previous deep learning networks, can generate higher-precision 3D shapes and achieves the best on
F
-score and CD. In addition, due to the introduction of fusion features from multiple images, our experimental results are more convincing and credible.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-022-02651-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Cameras ; Color imagery ; Computer Graphics ; Computer Science ; Deep learning ; Finite element method ; Image Processing and Computer Vision ; Image reconstruction ; Mesh generation ; Methods ; Neural networks ; Original Article ; Smoothness ; Three dimensional models ; Topology</subject><ispartof>The Visual computer, 2023-10, Vol.39 (10), p.5153-5166</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-3f4b1d76775bf0f6aacfd4fb4b033600e620beb1d5125282b171f69d34ccb5f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-022-02651-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917987665?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51298,64362,64366,72216</link.rule.ids></links><search><creatorcontrib>Chen, Rongshan</creatorcontrib><creatorcontrib>Yin, Xiang</creatorcontrib><creatorcontrib>Yang, Yuancheng</creatorcontrib><creatorcontrib>Tong, Chao</creatorcontrib><title>Multi-view Pixel2Mesh++: 3D reconstruction via Pixel2Mesh with more images</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>To meet the increasing demand for high-quality 3D models, we propose an end-to-end deep learning network architecture, which can generate 3D mesh models with multiple RGB images and is different from previous methods which generate voxel or point cloud models. Unlike the single-image-based pixel2mesh network, we introduce the ConvLSTM layer to fuse perceptual features, making it possible to process multiple images simultaneously. To constrain the smoothness of 3D shapes, we design a graph pooling layer to reduce mesh structure and define a new loss function—Smooth loss. Collaborating with the graph unpooling layer in Pixel2Mesh (P2M), the graph pooling layer guarantees the mesh topology of the final 3D shapes generated. The application of Smooth loss ensures the visual appeal and structural accuracy of 3D shapes generated. Our experiments on ShapeNet dataset show that our method, compared with previous deep learning networks, can generate higher-precision 3D shapes and achieves the best on
F
-score and CD. In addition, due to the introduction of fusion features from multiple images, our experimental results are more convincing and credible.</description><subject>Artificial Intelligence</subject><subject>Cameras</subject><subject>Color imagery</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Deep learning</subject><subject>Finite element method</subject><subject>Image Processing and Computer Vision</subject><subject>Image reconstruction</subject><subject>Mesh generation</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Smoothness</subject><subject>Three dimensional models</subject><subject>Topology</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAY4lOkk2y603qNy160HPYpEm7pd2tyW6r_97oCnryMAwDzzszPAidUjinAOoiAnBFCTCWSgpK1B4a0IwzwjgV-2gAVOWEqbw4REcxLiHNKisG6HHardqKbCu3w8_Vu1uxqYuL0egS82scnG3q2IbOtlVT421V_mHwrmoXeN0Eh6t1OXfxGB34chXdyU8fotfbm5fxPZk83T2MrybEMgUt4T4zdKakUsJ48LIsrZ9l3mQGOJcATjIwLiGCMsFyZqiiXhYznllrhKd8iM76vZvQvHUutnrZdKFOJzUrqCpyJaVIFOspG5oYg_N6E9Kf4UNT0F_OdO9MJ2f625lWKcT7UExwPXfhd_U_qU_Pnm3L</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Chen, Rongshan</creator><creator>Yin, Xiang</creator><creator>Yang, Yuancheng</creator><creator>Tong, Chao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20231001</creationdate><title>Multi-view Pixel2Mesh++: 3D reconstruction via Pixel2Mesh with more images</title><author>Chen, Rongshan ; Yin, Xiang ; Yang, Yuancheng ; Tong, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-3f4b1d76775bf0f6aacfd4fb4b033600e620beb1d5125282b171f69d34ccb5f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Cameras</topic><topic>Color imagery</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Deep learning</topic><topic>Finite element method</topic><topic>Image Processing and Computer Vision</topic><topic>Image reconstruction</topic><topic>Mesh generation</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Smoothness</topic><topic>Three dimensional models</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Rongshan</creatorcontrib><creatorcontrib>Yin, Xiang</creatorcontrib><creatorcontrib>Yang, Yuancheng</creatorcontrib><creatorcontrib>Tong, Chao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Rongshan</au><au>Yin, Xiang</au><au>Yang, Yuancheng</au><au>Tong, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-view Pixel2Mesh++: 3D reconstruction via Pixel2Mesh with more images</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>39</volume><issue>10</issue><spage>5153</spage><epage>5166</epage><pages>5153-5166</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>To meet the increasing demand for high-quality 3D models, we propose an end-to-end deep learning network architecture, which can generate 3D mesh models with multiple RGB images and is different from previous methods which generate voxel or point cloud models. Unlike the single-image-based pixel2mesh network, we introduce the ConvLSTM layer to fuse perceptual features, making it possible to process multiple images simultaneously. To constrain the smoothness of 3D shapes, we design a graph pooling layer to reduce mesh structure and define a new loss function—Smooth loss. Collaborating with the graph unpooling layer in Pixel2Mesh (P2M), the graph pooling layer guarantees the mesh topology of the final 3D shapes generated. The application of Smooth loss ensures the visual appeal and structural accuracy of 3D shapes generated. Our experiments on ShapeNet dataset show that our method, compared with previous deep learning networks, can generate higher-precision 3D shapes and achieves the best on
F
-score and CD. In addition, due to the introduction of fusion features from multiple images, our experimental results are more convincing and credible.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-022-02651-7</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-2789 |
ispartof | The Visual computer, 2023-10, Vol.39 (10), p.5153-5166 |
issn | 0178-2789 1432-2315 |
language | eng |
recordid | cdi_proquest_journals_2917987665 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Artificial Intelligence Cameras Color imagery Computer Graphics Computer Science Deep learning Finite element method Image Processing and Computer Vision Image reconstruction Mesh generation Methods Neural networks Original Article Smoothness Three dimensional models Topology |
title | Multi-view Pixel2Mesh++: 3D reconstruction via Pixel2Mesh with more images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A01%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-view%20Pixel2Mesh++:%203D%20reconstruction%20via%20Pixel2Mesh%20with%20more%20images&rft.jtitle=The%20Visual%20computer&rft.au=Chen,%20Rongshan&rft.date=2023-10-01&rft.volume=39&rft.issue=10&rft.spage=5153&rft.epage=5166&rft.pages=5153-5166&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-022-02651-7&rft_dat=%3Cproquest_cross%3E2917987665%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917987665&rft_id=info:pmid/&rfr_iscdi=true |