Chaos-assisted multiobjective evolutionary algorithm to the design of transformer
In this paper, multiobjective transformer design (TD) optimization is carried out using multiobjective evolutionary algorithm (MOEA) based on decomposition with dynamical resource allocation (MOEA/D-DRA) for four sets of conflicting TD bi-objectives such as (i) purchase cost and total loss, (ii) pur...
Gespeichert in:
Veröffentlicht in: | Soft computing (Berlin, Germany) Germany), 2017-10, Vol.21 (19), p.5675-5692 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5692 |
---|---|
container_issue | 19 |
container_start_page | 5675 |
container_title | Soft computing (Berlin, Germany) |
container_volume | 21 |
creator | Tamilselvi, S. Baskar, S. Anandapadmanaban, L. Kadhar, K. Mohaideen Abdul Varshini, P. R. |
description | In this paper, multiobjective transformer design (TD) optimization is carried out using multiobjective evolutionary algorithm (MOEA) based on decomposition with dynamical resource allocation (MOEA/D-DRA) for four sets of conflicting TD bi-objectives such as (i) purchase cost and total loss, (ii) purchase cost and total lifetime cost (TLTC), (iii) total mass and total loss and (iv) total mass and TLTC, subjected to 14 various practical constraints. Significant decision variables with enlarged search space are employed for obtaining reliable and efficient TD with minimum losses and TLTC. TD is accompanied by 3D-finite element method assessment to validate the designed no-load loss calculated from analytical equations. To improve the searching ability of MOEA/D-DRA (MDRA) in solving this complex multimodal TD optimization problem (TDOP), this paper proposes integration of chaos with MDRA, enabling chaotic variation in the crossover rate and mutation scaling factor. To prove the effectiveness of chaos-assisted MOEA, logistic chaotic map-assisted MDRA, and iterative chaotic map with infinite collapses- (ICMIC) assisted MDRA (ICMDRA) have been successfully applied to multiobjective TDOP and their TD results are compared with those of MDRA, knee point-driven evolutionary multiobjective optimization algorithm (KnEA), and non-dominated sorting genetic algorithm (NSGA) II. This paper identifies which chaotic map can assist MDRA and solve TDOP by comparative analysis of performance of logistic and ICMIC chaotic maps. Efficient TD results and two MOEA performance indicators confirm the superiority of ICMDRA over all the other MOEAs in terms of diversity and convergence in solving TDOP. |
doi_str_mv | 10.1007/s00500-016-2145-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917984636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917984636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-26d02f2c2f7a41f84a9ccf16b7135d3297e1c817573fae3792040074cc073cd73</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAczRfm3SPUvyCggh6Dmk2abfsbmomW_Dfm7qCJ08zDO-8M--D0DWjt4xSfQeUVpQSyhThTFZEn6AZk0IQLXV9-tNzopUU5-gCYEcpZ7oSM_S23NoIxAK0kH2D-7HLbVzvvMvtwWN_iN1YBoNNX9h2m5javO1xjjhvPW48tJsBx4BzsgOEmHqfLtFZsB34q986Rx-PD-_LZ7J6fXpZ3q-IE0xlwlVDeeCOB20lCwtpa-cCU2vNRNUIXmvP3KI8qUWwXuiaU1mCSueoFq7RYo5uJt99ip-jh2x2cUxDOWl4zXS9kEqoomKTyqUIkHww-9T2JY1h1BzJmYmcKeTMkZw5OvNpB4p22Pj05_z_0jdMOnEp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917984636</pqid></control><display><type>article</type><title>Chaos-assisted multiobjective evolutionary algorithm to the design of transformer</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Tamilselvi, S. ; Baskar, S. ; Anandapadmanaban, L. ; Kadhar, K. Mohaideen Abdul ; Varshini, P. R.</creator><creatorcontrib>Tamilselvi, S. ; Baskar, S. ; Anandapadmanaban, L. ; Kadhar, K. Mohaideen Abdul ; Varshini, P. R.</creatorcontrib><description>In this paper, multiobjective transformer design (TD) optimization is carried out using multiobjective evolutionary algorithm (MOEA) based on decomposition with dynamical resource allocation (MOEA/D-DRA) for four sets of conflicting TD bi-objectives such as (i) purchase cost and total loss, (ii) purchase cost and total lifetime cost (TLTC), (iii) total mass and total loss and (iv) total mass and TLTC, subjected to 14 various practical constraints. Significant decision variables with enlarged search space are employed for obtaining reliable and efficient TD with minimum losses and TLTC. TD is accompanied by 3D-finite element method assessment to validate the designed no-load loss calculated from analytical equations. To improve the searching ability of MOEA/D-DRA (MDRA) in solving this complex multimodal TD optimization problem (TDOP), this paper proposes integration of chaos with MDRA, enabling chaotic variation in the crossover rate and mutation scaling factor. To prove the effectiveness of chaos-assisted MOEA, logistic chaotic map-assisted MDRA, and iterative chaotic map with infinite collapses- (ICMIC) assisted MDRA (ICMDRA) have been successfully applied to multiobjective TDOP and their TD results are compared with those of MDRA, knee point-driven evolutionary multiobjective optimization algorithm (KnEA), and non-dominated sorting genetic algorithm (NSGA) II. This paper identifies which chaotic map can assist MDRA and solve TDOP by comparative analysis of performance of logistic and ICMIC chaotic maps. Efficient TD results and two MOEA performance indicators confirm the superiority of ICMDRA over all the other MOEAs in terms of diversity and convergence in solving TDOP.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-016-2145-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Chaos theory ; Computational Intelligence ; Control ; Design optimization ; Efficiency ; Engineering ; Evolutionary algorithms ; Finite element method ; Genetic algorithms ; Integer programming ; Linear programming ; Manufacturers ; Mathematical analysis ; Mathematical Logic and Foundations ; Mathematical programming ; Mechatronics ; Methodologies and Application ; Multiple objective analysis ; Neural networks ; Objectives ; Resource allocation ; Robotics ; Scaling factors ; Sorting algorithms ; Transformers ; Variables</subject><ispartof>Soft computing (Berlin, Germany), 2017-10, Vol.21 (19), p.5675-5692</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Springer-Verlag Berlin Heidelberg 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-26d02f2c2f7a41f84a9ccf16b7135d3297e1c817573fae3792040074cc073cd73</citedby><cites>FETCH-LOGICAL-c316t-26d02f2c2f7a41f84a9ccf16b7135d3297e1c817573fae3792040074cc073cd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-016-2145-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917984636?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21369,27905,27906,33725,41469,42538,43786,51300,64364,64368,72218</link.rule.ids></links><search><creatorcontrib>Tamilselvi, S.</creatorcontrib><creatorcontrib>Baskar, S.</creatorcontrib><creatorcontrib>Anandapadmanaban, L.</creatorcontrib><creatorcontrib>Kadhar, K. Mohaideen Abdul</creatorcontrib><creatorcontrib>Varshini, P. R.</creatorcontrib><title>Chaos-assisted multiobjective evolutionary algorithm to the design of transformer</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>In this paper, multiobjective transformer design (TD) optimization is carried out using multiobjective evolutionary algorithm (MOEA) based on decomposition with dynamical resource allocation (MOEA/D-DRA) for four sets of conflicting TD bi-objectives such as (i) purchase cost and total loss, (ii) purchase cost and total lifetime cost (TLTC), (iii) total mass and total loss and (iv) total mass and TLTC, subjected to 14 various practical constraints. Significant decision variables with enlarged search space are employed for obtaining reliable and efficient TD with minimum losses and TLTC. TD is accompanied by 3D-finite element method assessment to validate the designed no-load loss calculated from analytical equations. To improve the searching ability of MOEA/D-DRA (MDRA) in solving this complex multimodal TD optimization problem (TDOP), this paper proposes integration of chaos with MDRA, enabling chaotic variation in the crossover rate and mutation scaling factor. To prove the effectiveness of chaos-assisted MOEA, logistic chaotic map-assisted MDRA, and iterative chaotic map with infinite collapses- (ICMIC) assisted MDRA (ICMDRA) have been successfully applied to multiobjective TDOP and their TD results are compared with those of MDRA, knee point-driven evolutionary multiobjective optimization algorithm (KnEA), and non-dominated sorting genetic algorithm (NSGA) II. This paper identifies which chaotic map can assist MDRA and solve TDOP by comparative analysis of performance of logistic and ICMIC chaotic maps. Efficient TD results and two MOEA performance indicators confirm the superiority of ICMDRA over all the other MOEAs in terms of diversity and convergence in solving TDOP.</description><subject>Artificial Intelligence</subject><subject>Chaos theory</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Design optimization</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Evolutionary algorithms</subject><subject>Finite element method</subject><subject>Genetic algorithms</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>Manufacturers</subject><subject>Mathematical analysis</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematical programming</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Multiple objective analysis</subject><subject>Neural networks</subject><subject>Objectives</subject><subject>Resource allocation</subject><subject>Robotics</subject><subject>Scaling factors</subject><subject>Sorting algorithms</subject><subject>Transformers</subject><subject>Variables</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wFvAczRfm3SPUvyCggh6Dmk2abfsbmomW_Dfm7qCJ08zDO-8M--D0DWjt4xSfQeUVpQSyhThTFZEn6AZk0IQLXV9-tNzopUU5-gCYEcpZ7oSM_S23NoIxAK0kH2D-7HLbVzvvMvtwWN_iN1YBoNNX9h2m5javO1xjjhvPW48tJsBx4BzsgOEmHqfLtFZsB34q986Rx-PD-_LZ7J6fXpZ3q-IE0xlwlVDeeCOB20lCwtpa-cCU2vNRNUIXmvP3KI8qUWwXuiaU1mCSueoFq7RYo5uJt99ip-jh2x2cUxDOWl4zXS9kEqoomKTyqUIkHww-9T2JY1h1BzJmYmcKeTMkZw5OvNpB4p22Pj05_z_0jdMOnEp</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Tamilselvi, S.</creator><creator>Baskar, S.</creator><creator>Anandapadmanaban, L.</creator><creator>Kadhar, K. Mohaideen Abdul</creator><creator>Varshini, P. R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20171001</creationdate><title>Chaos-assisted multiobjective evolutionary algorithm to the design of transformer</title><author>Tamilselvi, S. ; Baskar, S. ; Anandapadmanaban, L. ; Kadhar, K. Mohaideen Abdul ; Varshini, P. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-26d02f2c2f7a41f84a9ccf16b7135d3297e1c817573fae3792040074cc073cd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial Intelligence</topic><topic>Chaos theory</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Design optimization</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Evolutionary algorithms</topic><topic>Finite element method</topic><topic>Genetic algorithms</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>Manufacturers</topic><topic>Mathematical analysis</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematical programming</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Multiple objective analysis</topic><topic>Neural networks</topic><topic>Objectives</topic><topic>Resource allocation</topic><topic>Robotics</topic><topic>Scaling factors</topic><topic>Sorting algorithms</topic><topic>Transformers</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tamilselvi, S.</creatorcontrib><creatorcontrib>Baskar, S.</creatorcontrib><creatorcontrib>Anandapadmanaban, L.</creatorcontrib><creatorcontrib>Kadhar, K. Mohaideen Abdul</creatorcontrib><creatorcontrib>Varshini, P. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tamilselvi, S.</au><au>Baskar, S.</au><au>Anandapadmanaban, L.</au><au>Kadhar, K. Mohaideen Abdul</au><au>Varshini, P. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chaos-assisted multiobjective evolutionary algorithm to the design of transformer</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>21</volume><issue>19</issue><spage>5675</spage><epage>5692</epage><pages>5675-5692</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>In this paper, multiobjective transformer design (TD) optimization is carried out using multiobjective evolutionary algorithm (MOEA) based on decomposition with dynamical resource allocation (MOEA/D-DRA) for four sets of conflicting TD bi-objectives such as (i) purchase cost and total loss, (ii) purchase cost and total lifetime cost (TLTC), (iii) total mass and total loss and (iv) total mass and TLTC, subjected to 14 various practical constraints. Significant decision variables with enlarged search space are employed for obtaining reliable and efficient TD with minimum losses and TLTC. TD is accompanied by 3D-finite element method assessment to validate the designed no-load loss calculated from analytical equations. To improve the searching ability of MOEA/D-DRA (MDRA) in solving this complex multimodal TD optimization problem (TDOP), this paper proposes integration of chaos with MDRA, enabling chaotic variation in the crossover rate and mutation scaling factor. To prove the effectiveness of chaos-assisted MOEA, logistic chaotic map-assisted MDRA, and iterative chaotic map with infinite collapses- (ICMIC) assisted MDRA (ICMDRA) have been successfully applied to multiobjective TDOP and their TD results are compared with those of MDRA, knee point-driven evolutionary multiobjective optimization algorithm (KnEA), and non-dominated sorting genetic algorithm (NSGA) II. This paper identifies which chaotic map can assist MDRA and solve TDOP by comparative analysis of performance of logistic and ICMIC chaotic maps. Efficient TD results and two MOEA performance indicators confirm the superiority of ICMDRA over all the other MOEAs in terms of diversity and convergence in solving TDOP.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-016-2145-7</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-7643 |
ispartof | Soft computing (Berlin, Germany), 2017-10, Vol.21 (19), p.5675-5692 |
issn | 1432-7643 1433-7479 |
language | eng |
recordid | cdi_proquest_journals_2917984636 |
source | Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Artificial Intelligence Chaos theory Computational Intelligence Control Design optimization Efficiency Engineering Evolutionary algorithms Finite element method Genetic algorithms Integer programming Linear programming Manufacturers Mathematical analysis Mathematical Logic and Foundations Mathematical programming Mechatronics Methodologies and Application Multiple objective analysis Neural networks Objectives Resource allocation Robotics Scaling factors Sorting algorithms Transformers Variables |
title | Chaos-assisted multiobjective evolutionary algorithm to the design of transformer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A45%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chaos-assisted%20multiobjective%20evolutionary%20algorithm%20to%20the%20design%20of%20transformer&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Tamilselvi,%20S.&rft.date=2017-10-01&rft.volume=21&rft.issue=19&rft.spage=5675&rft.epage=5692&rft.pages=5675-5692&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-016-2145-7&rft_dat=%3Cproquest_cross%3E2917984636%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917984636&rft_id=info:pmid/&rfr_iscdi=true |