Chaos-assisted multiobjective evolutionary algorithm to the design of transformer

In this paper, multiobjective transformer design (TD) optimization is carried out using multiobjective evolutionary algorithm (MOEA) based on decomposition with dynamical resource allocation (MOEA/D-DRA) for four sets of conflicting TD bi-objectives such as (i) purchase cost and total loss, (ii) pur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2017-10, Vol.21 (19), p.5675-5692
Hauptverfasser: Tamilselvi, S., Baskar, S., Anandapadmanaban, L., Kadhar, K. Mohaideen Abdul, Varshini, P. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5692
container_issue 19
container_start_page 5675
container_title Soft computing (Berlin, Germany)
container_volume 21
creator Tamilselvi, S.
Baskar, S.
Anandapadmanaban, L.
Kadhar, K. Mohaideen Abdul
Varshini, P. R.
description In this paper, multiobjective transformer design (TD) optimization is carried out using multiobjective evolutionary algorithm (MOEA) based on decomposition with dynamical resource allocation (MOEA/D-DRA) for four sets of conflicting TD bi-objectives such as (i) purchase cost and total loss, (ii) purchase cost and total lifetime cost (TLTC), (iii) total mass and total loss and (iv) total mass and TLTC, subjected to 14 various practical constraints. Significant decision variables with enlarged search space are employed for obtaining reliable and efficient TD with minimum losses and TLTC. TD is accompanied by 3D-finite element method assessment to validate the designed no-load loss calculated from analytical equations. To improve the searching ability of MOEA/D-DRA (MDRA) in solving this complex multimodal TD optimization problem (TDOP), this paper proposes integration of chaos with MDRA, enabling chaotic variation in the crossover rate and mutation scaling factor. To prove the effectiveness of chaos-assisted MOEA, logistic chaotic map-assisted MDRA, and iterative chaotic map with infinite collapses- (ICMIC) assisted MDRA (ICMDRA) have been successfully applied to multiobjective TDOP and their TD results are compared with those of MDRA, knee point-driven evolutionary multiobjective optimization algorithm (KnEA), and non-dominated sorting genetic algorithm (NSGA) II. This paper identifies which chaotic map can assist MDRA and solve TDOP by comparative analysis of performance of logistic and ICMIC chaotic maps. Efficient TD results and two MOEA performance indicators confirm the superiority of ICMDRA over all the other MOEAs in terms of diversity and convergence in solving TDOP.
doi_str_mv 10.1007/s00500-016-2145-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917984636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917984636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-26d02f2c2f7a41f84a9ccf16b7135d3297e1c817573fae3792040074cc073cd73</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAczRfm3SPUvyCggh6Dmk2abfsbmomW_Dfm7qCJ08zDO-8M--D0DWjt4xSfQeUVpQSyhThTFZEn6AZk0IQLXV9-tNzopUU5-gCYEcpZ7oSM_S23NoIxAK0kH2D-7HLbVzvvMvtwWN_iN1YBoNNX9h2m5javO1xjjhvPW48tJsBx4BzsgOEmHqfLtFZsB34q986Rx-PD-_LZ7J6fXpZ3q-IE0xlwlVDeeCOB20lCwtpa-cCU2vNRNUIXmvP3KI8qUWwXuiaU1mCSueoFq7RYo5uJt99ip-jh2x2cUxDOWl4zXS9kEqoomKTyqUIkHww-9T2JY1h1BzJmYmcKeTMkZw5OvNpB4p22Pj05_z_0jdMOnEp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917984636</pqid></control><display><type>article</type><title>Chaos-assisted multiobjective evolutionary algorithm to the design of transformer</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Tamilselvi, S. ; Baskar, S. ; Anandapadmanaban, L. ; Kadhar, K. Mohaideen Abdul ; Varshini, P. R.</creator><creatorcontrib>Tamilselvi, S. ; Baskar, S. ; Anandapadmanaban, L. ; Kadhar, K. Mohaideen Abdul ; Varshini, P. R.</creatorcontrib><description>In this paper, multiobjective transformer design (TD) optimization is carried out using multiobjective evolutionary algorithm (MOEA) based on decomposition with dynamical resource allocation (MOEA/D-DRA) for four sets of conflicting TD bi-objectives such as (i) purchase cost and total loss, (ii) purchase cost and total lifetime cost (TLTC), (iii) total mass and total loss and (iv) total mass and TLTC, subjected to 14 various practical constraints. Significant decision variables with enlarged search space are employed for obtaining reliable and efficient TD with minimum losses and TLTC. TD is accompanied by 3D-finite element method assessment to validate the designed no-load loss calculated from analytical equations. To improve the searching ability of MOEA/D-DRA (MDRA) in solving this complex multimodal TD optimization problem (TDOP), this paper proposes integration of chaos with MDRA, enabling chaotic variation in the crossover rate and mutation scaling factor. To prove the effectiveness of chaos-assisted MOEA, logistic chaotic map-assisted MDRA, and iterative chaotic map with infinite collapses- (ICMIC) assisted MDRA (ICMDRA) have been successfully applied to multiobjective TDOP and their TD results are compared with those of MDRA, knee point-driven evolutionary multiobjective optimization algorithm (KnEA), and non-dominated sorting genetic algorithm (NSGA) II. This paper identifies which chaotic map can assist MDRA and solve TDOP by comparative analysis of performance of logistic and ICMIC chaotic maps. Efficient TD results and two MOEA performance indicators confirm the superiority of ICMDRA over all the other MOEAs in terms of diversity and convergence in solving TDOP.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-016-2145-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Chaos theory ; Computational Intelligence ; Control ; Design optimization ; Efficiency ; Engineering ; Evolutionary algorithms ; Finite element method ; Genetic algorithms ; Integer programming ; Linear programming ; Manufacturers ; Mathematical analysis ; Mathematical Logic and Foundations ; Mathematical programming ; Mechatronics ; Methodologies and Application ; Multiple objective analysis ; Neural networks ; Objectives ; Resource allocation ; Robotics ; Scaling factors ; Sorting algorithms ; Transformers ; Variables</subject><ispartof>Soft computing (Berlin, Germany), 2017-10, Vol.21 (19), p.5675-5692</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Springer-Verlag Berlin Heidelberg 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-26d02f2c2f7a41f84a9ccf16b7135d3297e1c817573fae3792040074cc073cd73</citedby><cites>FETCH-LOGICAL-c316t-26d02f2c2f7a41f84a9ccf16b7135d3297e1c817573fae3792040074cc073cd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-016-2145-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917984636?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21369,27905,27906,33725,41469,42538,43786,51300,64364,64368,72218</link.rule.ids></links><search><creatorcontrib>Tamilselvi, S.</creatorcontrib><creatorcontrib>Baskar, S.</creatorcontrib><creatorcontrib>Anandapadmanaban, L.</creatorcontrib><creatorcontrib>Kadhar, K. Mohaideen Abdul</creatorcontrib><creatorcontrib>Varshini, P. R.</creatorcontrib><title>Chaos-assisted multiobjective evolutionary algorithm to the design of transformer</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>In this paper, multiobjective transformer design (TD) optimization is carried out using multiobjective evolutionary algorithm (MOEA) based on decomposition with dynamical resource allocation (MOEA/D-DRA) for four sets of conflicting TD bi-objectives such as (i) purchase cost and total loss, (ii) purchase cost and total lifetime cost (TLTC), (iii) total mass and total loss and (iv) total mass and TLTC, subjected to 14 various practical constraints. Significant decision variables with enlarged search space are employed for obtaining reliable and efficient TD with minimum losses and TLTC. TD is accompanied by 3D-finite element method assessment to validate the designed no-load loss calculated from analytical equations. To improve the searching ability of MOEA/D-DRA (MDRA) in solving this complex multimodal TD optimization problem (TDOP), this paper proposes integration of chaos with MDRA, enabling chaotic variation in the crossover rate and mutation scaling factor. To prove the effectiveness of chaos-assisted MOEA, logistic chaotic map-assisted MDRA, and iterative chaotic map with infinite collapses- (ICMIC) assisted MDRA (ICMDRA) have been successfully applied to multiobjective TDOP and their TD results are compared with those of MDRA, knee point-driven evolutionary multiobjective optimization algorithm (KnEA), and non-dominated sorting genetic algorithm (NSGA) II. This paper identifies which chaotic map can assist MDRA and solve TDOP by comparative analysis of performance of logistic and ICMIC chaotic maps. Efficient TD results and two MOEA performance indicators confirm the superiority of ICMDRA over all the other MOEAs in terms of diversity and convergence in solving TDOP.</description><subject>Artificial Intelligence</subject><subject>Chaos theory</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Design optimization</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Evolutionary algorithms</subject><subject>Finite element method</subject><subject>Genetic algorithms</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>Manufacturers</subject><subject>Mathematical analysis</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematical programming</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Multiple objective analysis</subject><subject>Neural networks</subject><subject>Objectives</subject><subject>Resource allocation</subject><subject>Robotics</subject><subject>Scaling factors</subject><subject>Sorting algorithms</subject><subject>Transformers</subject><subject>Variables</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wFvAczRfm3SPUvyCggh6Dmk2abfsbmomW_Dfm7qCJ08zDO-8M--D0DWjt4xSfQeUVpQSyhThTFZEn6AZk0IQLXV9-tNzopUU5-gCYEcpZ7oSM_S23NoIxAK0kH2D-7HLbVzvvMvtwWN_iN1YBoNNX9h2m5javO1xjjhvPW48tJsBx4BzsgOEmHqfLtFZsB34q986Rx-PD-_LZ7J6fXpZ3q-IE0xlwlVDeeCOB20lCwtpa-cCU2vNRNUIXmvP3KI8qUWwXuiaU1mCSueoFq7RYo5uJt99ip-jh2x2cUxDOWl4zXS9kEqoomKTyqUIkHww-9T2JY1h1BzJmYmcKeTMkZw5OvNpB4p22Pj05_z_0jdMOnEp</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Tamilselvi, S.</creator><creator>Baskar, S.</creator><creator>Anandapadmanaban, L.</creator><creator>Kadhar, K. Mohaideen Abdul</creator><creator>Varshini, P. R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20171001</creationdate><title>Chaos-assisted multiobjective evolutionary algorithm to the design of transformer</title><author>Tamilselvi, S. ; Baskar, S. ; Anandapadmanaban, L. ; Kadhar, K. Mohaideen Abdul ; Varshini, P. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-26d02f2c2f7a41f84a9ccf16b7135d3297e1c817573fae3792040074cc073cd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial Intelligence</topic><topic>Chaos theory</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Design optimization</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Evolutionary algorithms</topic><topic>Finite element method</topic><topic>Genetic algorithms</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>Manufacturers</topic><topic>Mathematical analysis</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematical programming</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Multiple objective analysis</topic><topic>Neural networks</topic><topic>Objectives</topic><topic>Resource allocation</topic><topic>Robotics</topic><topic>Scaling factors</topic><topic>Sorting algorithms</topic><topic>Transformers</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tamilselvi, S.</creatorcontrib><creatorcontrib>Baskar, S.</creatorcontrib><creatorcontrib>Anandapadmanaban, L.</creatorcontrib><creatorcontrib>Kadhar, K. Mohaideen Abdul</creatorcontrib><creatorcontrib>Varshini, P. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tamilselvi, S.</au><au>Baskar, S.</au><au>Anandapadmanaban, L.</au><au>Kadhar, K. Mohaideen Abdul</au><au>Varshini, P. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chaos-assisted multiobjective evolutionary algorithm to the design of transformer</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>21</volume><issue>19</issue><spage>5675</spage><epage>5692</epage><pages>5675-5692</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>In this paper, multiobjective transformer design (TD) optimization is carried out using multiobjective evolutionary algorithm (MOEA) based on decomposition with dynamical resource allocation (MOEA/D-DRA) for four sets of conflicting TD bi-objectives such as (i) purchase cost and total loss, (ii) purchase cost and total lifetime cost (TLTC), (iii) total mass and total loss and (iv) total mass and TLTC, subjected to 14 various practical constraints. Significant decision variables with enlarged search space are employed for obtaining reliable and efficient TD with minimum losses and TLTC. TD is accompanied by 3D-finite element method assessment to validate the designed no-load loss calculated from analytical equations. To improve the searching ability of MOEA/D-DRA (MDRA) in solving this complex multimodal TD optimization problem (TDOP), this paper proposes integration of chaos with MDRA, enabling chaotic variation in the crossover rate and mutation scaling factor. To prove the effectiveness of chaos-assisted MOEA, logistic chaotic map-assisted MDRA, and iterative chaotic map with infinite collapses- (ICMIC) assisted MDRA (ICMDRA) have been successfully applied to multiobjective TDOP and their TD results are compared with those of MDRA, knee point-driven evolutionary multiobjective optimization algorithm (KnEA), and non-dominated sorting genetic algorithm (NSGA) II. This paper identifies which chaotic map can assist MDRA and solve TDOP by comparative analysis of performance of logistic and ICMIC chaotic maps. Efficient TD results and two MOEA performance indicators confirm the superiority of ICMDRA over all the other MOEAs in terms of diversity and convergence in solving TDOP.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-016-2145-7</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2017-10, Vol.21 (19), p.5675-5692
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2917984636
source Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Artificial Intelligence
Chaos theory
Computational Intelligence
Control
Design optimization
Efficiency
Engineering
Evolutionary algorithms
Finite element method
Genetic algorithms
Integer programming
Linear programming
Manufacturers
Mathematical analysis
Mathematical Logic and Foundations
Mathematical programming
Mechatronics
Methodologies and Application
Multiple objective analysis
Neural networks
Objectives
Resource allocation
Robotics
Scaling factors
Sorting algorithms
Transformers
Variables
title Chaos-assisted multiobjective evolutionary algorithm to the design of transformer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A45%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chaos-assisted%20multiobjective%20evolutionary%20algorithm%20to%20the%20design%20of%20transformer&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Tamilselvi,%20S.&rft.date=2017-10-01&rft.volume=21&rft.issue=19&rft.spage=5675&rft.epage=5692&rft.pages=5675-5692&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-016-2145-7&rft_dat=%3Cproquest_cross%3E2917984636%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917984636&rft_id=info:pmid/&rfr_iscdi=true