Remote Detection of Ammonium Nitrate by Nuclear Quadrupole Resonance using a Portable System

This paper shows the advances in the development of a portable system for remote detection of ammonium nitrate by nuclear quadrupole resonance. Three different probe coils were constructed and compared in terms of the signal intensity and the noise rejection under different environments, using the d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied magnetic resonance 2015-03, Vol.46 (3), p.295-307
Hauptverfasser: Cardona, Lorena, Miyato, Yuji, Itozaki, Hideo, Jiménez, Jovani, Vanegas, Nelson, Sato-Akaba, Hideo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 307
container_issue 3
container_start_page 295
container_title Applied magnetic resonance
container_volume 46
creator Cardona, Lorena
Miyato, Yuji
Itozaki, Hideo
Jiménez, Jovani
Vanegas, Nelson
Sato-Akaba, Hideo
description This paper shows the advances in the development of a portable system for remote detection of ammonium nitrate by nuclear quadrupole resonance. Three different probe coils were constructed and compared in terms of the signal intensity and the noise rejection under different environments, using the developed system. For the gradiometer probe coil, which showed the best performance in terms of noise rejection, the ‘90°’ equivalent pulse was determined for different distances between the sample and the probe, and the remote detection of ammonium nitrate was achieved not only in a shielded room inside the laboratory, but also in the outdoors. The system was capable of detecting 200 g ammonium nitrate at 3 cm apart from the probe within 12 s with a steady-state free precession pulse sequence. The comparable results were obtained with a free induction decay sequence in 25 min for the total acquisition time. The compact size of the system will allow the applications for the substance detection in the outdoors especially for landmines made from ammonium nitrate and fuel oil mixtures instead of military explosives.
doi_str_mv 10.1007/s00723-014-0623-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917983761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917983761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-c000c84b1ceec68b8f8517fb42782f0ddd8bfa2d212effa308ad191c8cb78c83</originalsourceid><addsrcrecordid>eNp1kEtLAzEQx4MoWKsfwFvAczSP7SZ7LL6hVK09CiGbnZQt3U1Nsod-e1NW8ORlZuD_GPghdM3oLaNU3sU8uCCUFYSW-ShP0ISVTBA5o_IUTWglJKlEIc_RRYxbStlMMTlBXyvofAL8AAlsan2PvcPzrvN9O3R42aZgslof8HKwOzABfwymCcPe7wCvIPre9BbwENt-gw1-9yGZOkufh5igu0RnzuwiXP3uKVo_Pa7vX8ji7fn1fr4gViieiKWUWlXUzALYUtXKqRmTri64VNzRpmlU7QxvOOPgnBFUmYZVzCpbS2WVmKKbsXYf_PcAMemtH0KfP2peMVkpITOJKWKjywYfYwCn96HtTDhoRvWRoR4Z6sxQHxnqMmf4mInZ228g_DX_H_oBNIF1OA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917983761</pqid></control><display><type>article</type><title>Remote Detection of Ammonium Nitrate by Nuclear Quadrupole Resonance using a Portable System</title><source>ProQuest Central Essentials</source><source>ProQuest Central Student</source><source>SpringerLink (Online service)</source><source>AUTh Library subscriptions: ProQuest Central</source><source>ProQuest Central (Alumni)</source><source>ProQuest Central</source><creator>Cardona, Lorena ; Miyato, Yuji ; Itozaki, Hideo ; Jiménez, Jovani ; Vanegas, Nelson ; Sato-Akaba, Hideo</creator><creatorcontrib>Cardona, Lorena ; Miyato, Yuji ; Itozaki, Hideo ; Jiménez, Jovani ; Vanegas, Nelson ; Sato-Akaba, Hideo</creatorcontrib><description>This paper shows the advances in the development of a portable system for remote detection of ammonium nitrate by nuclear quadrupole resonance. Three different probe coils were constructed and compared in terms of the signal intensity and the noise rejection under different environments, using the developed system. For the gradiometer probe coil, which showed the best performance in terms of noise rejection, the ‘90°’ equivalent pulse was determined for different distances between the sample and the probe, and the remote detection of ammonium nitrate was achieved not only in a shielded room inside the laboratory, but also in the outdoors. The system was capable of detecting 200 g ammonium nitrate at 3 cm apart from the probe within 12 s with a steady-state free precession pulse sequence. The comparable results were obtained with a free induction decay sequence in 25 min for the total acquisition time. The compact size of the system will allow the applications for the substance detection in the outdoors especially for landmines made from ammonium nitrate and fuel oil mixtures instead of military explosives.</description><identifier>ISSN: 0937-9347</identifier><identifier>EISSN: 1613-7507</identifier><identifier>DOI: 10.1007/s00723-014-0623-6</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Ammonium nitrate ; Atoms and Molecules in Strong Fields ; Coils ; Explosives ; Fuel oils ; Gradiometers ; Land mines ; Laser Matter Interaction ; Magnetic fields ; Magnetic measurement ; Mine detection ; Nitrates ; NMR ; Nuclear magnetic resonance ; Nuclear quadrupole resonance ; Organic Chemistry ; Physical Chemistry ; Physics ; Physics and Astronomy ; Portability ; Power supply ; Quadrupoles ; Rejection ; Signal processing ; Solid State Physics ; Spectroscopy/Spectrometry</subject><ispartof>Applied magnetic resonance, 2015-03, Vol.46 (3), p.295-307</ispartof><rights>Springer-Verlag Wien 2015</rights><rights>Springer-Verlag Wien 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-c000c84b1ceec68b8f8517fb42782f0ddd8bfa2d212effa308ad191c8cb78c83</citedby><cites>FETCH-LOGICAL-c382t-c000c84b1ceec68b8f8517fb42782f0ddd8bfa2d212effa308ad191c8cb78c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00723-014-0623-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917983761?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,21389,21390,21391,23256,27924,27925,33530,33703,33744,34005,34314,41488,42557,43659,43787,43805,43953,44067,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Cardona, Lorena</creatorcontrib><creatorcontrib>Miyato, Yuji</creatorcontrib><creatorcontrib>Itozaki, Hideo</creatorcontrib><creatorcontrib>Jiménez, Jovani</creatorcontrib><creatorcontrib>Vanegas, Nelson</creatorcontrib><creatorcontrib>Sato-Akaba, Hideo</creatorcontrib><title>Remote Detection of Ammonium Nitrate by Nuclear Quadrupole Resonance using a Portable System</title><title>Applied magnetic resonance</title><addtitle>Appl Magn Reson</addtitle><description>This paper shows the advances in the development of a portable system for remote detection of ammonium nitrate by nuclear quadrupole resonance. Three different probe coils were constructed and compared in terms of the signal intensity and the noise rejection under different environments, using the developed system. For the gradiometer probe coil, which showed the best performance in terms of noise rejection, the ‘90°’ equivalent pulse was determined for different distances between the sample and the probe, and the remote detection of ammonium nitrate was achieved not only in a shielded room inside the laboratory, but also in the outdoors. The system was capable of detecting 200 g ammonium nitrate at 3 cm apart from the probe within 12 s with a steady-state free precession pulse sequence. The comparable results were obtained with a free induction decay sequence in 25 min for the total acquisition time. The compact size of the system will allow the applications for the substance detection in the outdoors especially for landmines made from ammonium nitrate and fuel oil mixtures instead of military explosives.</description><subject>Ammonium nitrate</subject><subject>Atoms and Molecules in Strong Fields</subject><subject>Coils</subject><subject>Explosives</subject><subject>Fuel oils</subject><subject>Gradiometers</subject><subject>Land mines</subject><subject>Laser Matter Interaction</subject><subject>Magnetic fields</subject><subject>Magnetic measurement</subject><subject>Mine detection</subject><subject>Nitrates</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear quadrupole resonance</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Portability</subject><subject>Power supply</subject><subject>Quadrupoles</subject><subject>Rejection</subject><subject>Signal processing</subject><subject>Solid State Physics</subject><subject>Spectroscopy/Spectrometry</subject><issn>0937-9347</issn><issn>1613-7507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEQx4MoWKsfwFvAczSP7SZ7LL6hVK09CiGbnZQt3U1Nsod-e1NW8ORlZuD_GPghdM3oLaNU3sU8uCCUFYSW-ShP0ISVTBA5o_IUTWglJKlEIc_RRYxbStlMMTlBXyvofAL8AAlsan2PvcPzrvN9O3R42aZgslof8HKwOzABfwymCcPe7wCvIPre9BbwENt-gw1-9yGZOkufh5igu0RnzuwiXP3uKVo_Pa7vX8ji7fn1fr4gViieiKWUWlXUzALYUtXKqRmTri64VNzRpmlU7QxvOOPgnBFUmYZVzCpbS2WVmKKbsXYf_PcAMemtH0KfP2peMVkpITOJKWKjywYfYwCn96HtTDhoRvWRoR4Z6sxQHxnqMmf4mInZ228g_DX_H_oBNIF1OA</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Cardona, Lorena</creator><creator>Miyato, Yuji</creator><creator>Itozaki, Hideo</creator><creator>Jiménez, Jovani</creator><creator>Vanegas, Nelson</creator><creator>Sato-Akaba, Hideo</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20150301</creationdate><title>Remote Detection of Ammonium Nitrate by Nuclear Quadrupole Resonance using a Portable System</title><author>Cardona, Lorena ; Miyato, Yuji ; Itozaki, Hideo ; Jiménez, Jovani ; Vanegas, Nelson ; Sato-Akaba, Hideo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-c000c84b1ceec68b8f8517fb42782f0ddd8bfa2d212effa308ad191c8cb78c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Ammonium nitrate</topic><topic>Atoms and Molecules in Strong Fields</topic><topic>Coils</topic><topic>Explosives</topic><topic>Fuel oils</topic><topic>Gradiometers</topic><topic>Land mines</topic><topic>Laser Matter Interaction</topic><topic>Magnetic fields</topic><topic>Magnetic measurement</topic><topic>Mine detection</topic><topic>Nitrates</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear quadrupole resonance</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Portability</topic><topic>Power supply</topic><topic>Quadrupoles</topic><topic>Rejection</topic><topic>Signal processing</topic><topic>Solid State Physics</topic><topic>Spectroscopy/Spectrometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cardona, Lorena</creatorcontrib><creatorcontrib>Miyato, Yuji</creatorcontrib><creatorcontrib>Itozaki, Hideo</creatorcontrib><creatorcontrib>Jiménez, Jovani</creatorcontrib><creatorcontrib>Vanegas, Nelson</creatorcontrib><creatorcontrib>Sato-Akaba, Hideo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Applied magnetic resonance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cardona, Lorena</au><au>Miyato, Yuji</au><au>Itozaki, Hideo</au><au>Jiménez, Jovani</au><au>Vanegas, Nelson</au><au>Sato-Akaba, Hideo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remote Detection of Ammonium Nitrate by Nuclear Quadrupole Resonance using a Portable System</atitle><jtitle>Applied magnetic resonance</jtitle><stitle>Appl Magn Reson</stitle><date>2015-03-01</date><risdate>2015</risdate><volume>46</volume><issue>3</issue><spage>295</spage><epage>307</epage><pages>295-307</pages><issn>0937-9347</issn><eissn>1613-7507</eissn><abstract>This paper shows the advances in the development of a portable system for remote detection of ammonium nitrate by nuclear quadrupole resonance. Three different probe coils were constructed and compared in terms of the signal intensity and the noise rejection under different environments, using the developed system. For the gradiometer probe coil, which showed the best performance in terms of noise rejection, the ‘90°’ equivalent pulse was determined for different distances between the sample and the probe, and the remote detection of ammonium nitrate was achieved not only in a shielded room inside the laboratory, but also in the outdoors. The system was capable of detecting 200 g ammonium nitrate at 3 cm apart from the probe within 12 s with a steady-state free precession pulse sequence. The comparable results were obtained with a free induction decay sequence in 25 min for the total acquisition time. The compact size of the system will allow the applications for the substance detection in the outdoors especially for landmines made from ammonium nitrate and fuel oil mixtures instead of military explosives.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00723-014-0623-6</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0937-9347
ispartof Applied magnetic resonance, 2015-03, Vol.46 (3), p.295-307
issn 0937-9347
1613-7507
language eng
recordid cdi_proquest_journals_2917983761
source ProQuest Central Essentials; ProQuest Central Student; SpringerLink (Online service); AUTh Library subscriptions: ProQuest Central; ProQuest Central (Alumni); ProQuest Central
subjects Ammonium nitrate
Atoms and Molecules in Strong Fields
Coils
Explosives
Fuel oils
Gradiometers
Land mines
Laser Matter Interaction
Magnetic fields
Magnetic measurement
Mine detection
Nitrates
NMR
Nuclear magnetic resonance
Nuclear quadrupole resonance
Organic Chemistry
Physical Chemistry
Physics
Physics and Astronomy
Portability
Power supply
Quadrupoles
Rejection
Signal processing
Solid State Physics
Spectroscopy/Spectrometry
title Remote Detection of Ammonium Nitrate by Nuclear Quadrupole Resonance using a Portable System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remote%20Detection%20of%20Ammonium%20Nitrate%20by%20Nuclear%20Quadrupole%20Resonance%20using%20a%20Portable%20System&rft.jtitle=Applied%20magnetic%20resonance&rft.au=Cardona,%20Lorena&rft.date=2015-03-01&rft.volume=46&rft.issue=3&rft.spage=295&rft.epage=307&rft.pages=295-307&rft.issn=0937-9347&rft.eissn=1613-7507&rft_id=info:doi/10.1007/s00723-014-0623-6&rft_dat=%3Cproquest_cross%3E2917983761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917983761&rft_id=info:pmid/&rfr_iscdi=true