Structure-aware error-diffusion approach using entropy-constrained threshold modulation

Error diffusion is known as a commonly used digital halftoning technique. We present a novel and efficient error-diffusion algorithm which is capable of preserving appreciable structures and tones with blue-noise property. According to the theoretical analysis of threshold modulation, the extraction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Visual computer 2014-10, Vol.30 (10), p.1145-1156
Hauptverfasser: Liu, Lingyue, Chen, Wei, Zheng, Wenting, Geng, Weidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1156
container_issue 10
container_start_page 1145
container_title The Visual computer
container_volume 30
creator Liu, Lingyue
Chen, Wei
Zheng, Wenting
Geng, Weidong
description Error diffusion is known as a commonly used digital halftoning technique. We present a novel and efficient error-diffusion algorithm which is capable of preserving appreciable structures and tones with blue-noise property. According to the theoretical analysis of threshold modulation, the extraction of the high-frequency image contents is helpful to preserve human vision-sensitive textures. The pixel intensity’s influence on the structural distortion is observed based on a key statistic phenomenon. This effect leads to the non-uniform conservation of diversiform detail contents. To alleviate this influence, an entropy is introduced to measure the intensity’s impact and adaptively constrain the threshold-modulation strength. Compared with the existing edge-enhancement halftoning, our entropy-based method does not suffer from the failure to detect weak edges or improper emphasis of details. On the other hand, this structural improvement enables the modification of error-diffusion coefficients to eliminate visually harmful tonal artifacts, which results in the seamless integration with the best tone-aware techniques (Ostromoukhov in Proceedings of ACM SIGGRAPH, SIGGRAPH ’01, pp 567–572, 2001 , Zhou and Fang in ACM Trans Graph (TOG) 22(3):437–444, 2003 ). Comparisons with the state-of-the-art structure-preserving error diffusions (Chang et al. in ACM Trans Graph (TOG) 28(5): 162:1–162:8, 2009 , Li and Mould in Forum 29(2):273–280, 2010 ) indicate that our methods can achieve better structural similarity with better tone consistency. Our performance is one order of magnitude faster than (Chang et al. in ACM Trans Graph (TOG) 28(5): 162:1–162:8, 2009 , Li and Mould in Forum 29(2): 273–280, 2010 ) while ensuring higher visual quality on typical images. Due to low computational overhead and high halftone quality, the proposed methods in this paper can be widely applicable in many practical applications.
doi_str_mv 10.1007/s00371-013-0895-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917981767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917981767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-73e9c4c14d1259887c86f71840c5678956c577832c6466741a9bdde4d73574cd3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2A62iek2QpxRcILlRchphk2intpN5kkP57U0Zw5epy4HznHg5Cl5RcU0LUTSaEK4oJ5ZhoIzE5QjMqOMOMU3mMZoQqjZnS5hSd5bwmVSthZujjtcDoywgRu28HsYkACXDou27MfRoat9tBcn7VVDksmzgUSLs99mnIBVw_xNCUFcS8SpvQbFMYN65U7hyddG6T48XvnaP3-7u3xSN-fnl4Wtw-Yy8kK1jxaLzwVATKpNFaed12impBvGxrW9l6qZTmzLeibZWgznyGEEVQXCrhA5-jqym3tvwaYy52nUYY6kvLDFVGU9Wq6qKTy0PKGWJnd9BvHewtJfawn532s3U_e9jPksqwicnVOywj_CX_D_0AtShzhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917981767</pqid></control><display><type>article</type><title>Structure-aware error-diffusion approach using entropy-constrained threshold modulation</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Liu, Lingyue ; Chen, Wei ; Zheng, Wenting ; Geng, Weidong</creator><creatorcontrib>Liu, Lingyue ; Chen, Wei ; Zheng, Wenting ; Geng, Weidong</creatorcontrib><description>Error diffusion is known as a commonly used digital halftoning technique. We present a novel and efficient error-diffusion algorithm which is capable of preserving appreciable structures and tones with blue-noise property. According to the theoretical analysis of threshold modulation, the extraction of the high-frequency image contents is helpful to preserve human vision-sensitive textures. The pixel intensity’s influence on the structural distortion is observed based on a key statistic phenomenon. This effect leads to the non-uniform conservation of diversiform detail contents. To alleviate this influence, an entropy is introduced to measure the intensity’s impact and adaptively constrain the threshold-modulation strength. Compared with the existing edge-enhancement halftoning, our entropy-based method does not suffer from the failure to detect weak edges or improper emphasis of details. On the other hand, this structural improvement enables the modification of error-diffusion coefficients to eliminate visually harmful tonal artifacts, which results in the seamless integration with the best tone-aware techniques (Ostromoukhov in Proceedings of ACM SIGGRAPH, SIGGRAPH ’01, pp 567–572, 2001 , Zhou and Fang in ACM Trans Graph (TOG) 22(3):437–444, 2003 ). Comparisons with the state-of-the-art structure-preserving error diffusions (Chang et al. in ACM Trans Graph (TOG) 28(5): 162:1–162:8, 2009 , Li and Mould in Forum 29(2):273–280, 2010 ) indicate that our methods can achieve better structural similarity with better tone consistency. Our performance is one order of magnitude faster than (Chang et al. in ACM Trans Graph (TOG) 28(5): 162:1–162:8, 2009 , Li and Mould in Forum 29(2): 273–280, 2010 ) while ensuring higher visual quality on typical images. Due to low computational overhead and high halftone quality, the proposed methods in this paper can be widely applicable in many practical applications.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-013-0895-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Computer Graphics ; Computer Science ; Diffusion ; Entropy ; Errors ; Image Processing and Computer Vision ; Image quality ; Methods ; Modulation ; Molds ; Original Article</subject><ispartof>The Visual computer, 2014-10, Vol.30 (10), p.1145-1156</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Springer-Verlag Berlin Heidelberg 2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-73e9c4c14d1259887c86f71840c5678956c577832c6466741a9bdde4d73574cd3</citedby><cites>FETCH-LOGICAL-c452t-73e9c4c14d1259887c86f71840c5678956c577832c6466741a9bdde4d73574cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-013-0895-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917981767?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21369,27905,27906,33725,41469,42538,43786,51300,64364,64368,72218</link.rule.ids></links><search><creatorcontrib>Liu, Lingyue</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Zheng, Wenting</creatorcontrib><creatorcontrib>Geng, Weidong</creatorcontrib><title>Structure-aware error-diffusion approach using entropy-constrained threshold modulation</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>Error diffusion is known as a commonly used digital halftoning technique. We present a novel and efficient error-diffusion algorithm which is capable of preserving appreciable structures and tones with blue-noise property. According to the theoretical analysis of threshold modulation, the extraction of the high-frequency image contents is helpful to preserve human vision-sensitive textures. The pixel intensity’s influence on the structural distortion is observed based on a key statistic phenomenon. This effect leads to the non-uniform conservation of diversiform detail contents. To alleviate this influence, an entropy is introduced to measure the intensity’s impact and adaptively constrain the threshold-modulation strength. Compared with the existing edge-enhancement halftoning, our entropy-based method does not suffer from the failure to detect weak edges or improper emphasis of details. On the other hand, this structural improvement enables the modification of error-diffusion coefficients to eliminate visually harmful tonal artifacts, which results in the seamless integration with the best tone-aware techniques (Ostromoukhov in Proceedings of ACM SIGGRAPH, SIGGRAPH ’01, pp 567–572, 2001 , Zhou and Fang in ACM Trans Graph (TOG) 22(3):437–444, 2003 ). Comparisons with the state-of-the-art structure-preserving error diffusions (Chang et al. in ACM Trans Graph (TOG) 28(5): 162:1–162:8, 2009 , Li and Mould in Forum 29(2):273–280, 2010 ) indicate that our methods can achieve better structural similarity with better tone consistency. Our performance is one order of magnitude faster than (Chang et al. in ACM Trans Graph (TOG) 28(5): 162:1–162:8, 2009 , Li and Mould in Forum 29(2): 273–280, 2010 ) while ensuring higher visual quality on typical images. Due to low computational overhead and high halftone quality, the proposed methods in this paper can be widely applicable in many practical applications.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Diffusion</subject><subject>Entropy</subject><subject>Errors</subject><subject>Image Processing and Computer Vision</subject><subject>Image quality</subject><subject>Methods</subject><subject>Modulation</subject><subject>Molds</subject><subject>Original Article</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wN2A62iek2QpxRcILlRchphk2intpN5kkP57U0Zw5epy4HznHg5Cl5RcU0LUTSaEK4oJ5ZhoIzE5QjMqOMOMU3mMZoQqjZnS5hSd5bwmVSthZujjtcDoywgRu28HsYkACXDou27MfRoat9tBcn7VVDksmzgUSLs99mnIBVw_xNCUFcS8SpvQbFMYN65U7hyddG6T48XvnaP3-7u3xSN-fnl4Wtw-Yy8kK1jxaLzwVATKpNFaed12impBvGxrW9l6qZTmzLeibZWgznyGEEVQXCrhA5-jqym3tvwaYy52nUYY6kvLDFVGU9Wq6qKTy0PKGWJnd9BvHewtJfawn532s3U_e9jPksqwicnVOywj_CX_D_0AtShzhg</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Liu, Lingyue</creator><creator>Chen, Wei</creator><creator>Zheng, Wenting</creator><creator>Geng, Weidong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20141001</creationdate><title>Structure-aware error-diffusion approach using entropy-constrained threshold modulation</title><author>Liu, Lingyue ; Chen, Wei ; Zheng, Wenting ; Geng, Weidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-73e9c4c14d1259887c86f71840c5678956c577832c6466741a9bdde4d73574cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Diffusion</topic><topic>Entropy</topic><topic>Errors</topic><topic>Image Processing and Computer Vision</topic><topic>Image quality</topic><topic>Methods</topic><topic>Modulation</topic><topic>Molds</topic><topic>Original Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Lingyue</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Zheng, Wenting</creatorcontrib><creatorcontrib>Geng, Weidong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Lingyue</au><au>Chen, Wei</au><au>Zheng, Wenting</au><au>Geng, Weidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure-aware error-diffusion approach using entropy-constrained threshold modulation</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>30</volume><issue>10</issue><spage>1145</spage><epage>1156</epage><pages>1145-1156</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>Error diffusion is known as a commonly used digital halftoning technique. We present a novel and efficient error-diffusion algorithm which is capable of preserving appreciable structures and tones with blue-noise property. According to the theoretical analysis of threshold modulation, the extraction of the high-frequency image contents is helpful to preserve human vision-sensitive textures. The pixel intensity’s influence on the structural distortion is observed based on a key statistic phenomenon. This effect leads to the non-uniform conservation of diversiform detail contents. To alleviate this influence, an entropy is introduced to measure the intensity’s impact and adaptively constrain the threshold-modulation strength. Compared with the existing edge-enhancement halftoning, our entropy-based method does not suffer from the failure to detect weak edges or improper emphasis of details. On the other hand, this structural improvement enables the modification of error-diffusion coefficients to eliminate visually harmful tonal artifacts, which results in the seamless integration with the best tone-aware techniques (Ostromoukhov in Proceedings of ACM SIGGRAPH, SIGGRAPH ’01, pp 567–572, 2001 , Zhou and Fang in ACM Trans Graph (TOG) 22(3):437–444, 2003 ). Comparisons with the state-of-the-art structure-preserving error diffusions (Chang et al. in ACM Trans Graph (TOG) 28(5): 162:1–162:8, 2009 , Li and Mould in Forum 29(2):273–280, 2010 ) indicate that our methods can achieve better structural similarity with better tone consistency. Our performance is one order of magnitude faster than (Chang et al. in ACM Trans Graph (TOG) 28(5): 162:1–162:8, 2009 , Li and Mould in Forum 29(2): 273–280, 2010 ) while ensuring higher visual quality on typical images. Due to low computational overhead and high halftone quality, the proposed methods in this paper can be widely applicable in many practical applications.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-013-0895-0</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-2789
ispartof The Visual computer, 2014-10, Vol.30 (10), p.1145-1156
issn 0178-2789
1432-2315
language eng
recordid cdi_proquest_journals_2917981767
source SpringerLink Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Algorithms
Artificial Intelligence
Computer Graphics
Computer Science
Diffusion
Entropy
Errors
Image Processing and Computer Vision
Image quality
Methods
Modulation
Molds
Original Article
title Structure-aware error-diffusion approach using entropy-constrained threshold modulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A12%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure-aware%20error-diffusion%20approach%20using%20entropy-constrained%20threshold%20modulation&rft.jtitle=The%20Visual%20computer&rft.au=Liu,%20Lingyue&rft.date=2014-10-01&rft.volume=30&rft.issue=10&rft.spage=1145&rft.epage=1156&rft.pages=1145-1156&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-013-0895-0&rft_dat=%3Cproquest_cross%3E2917981767%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917981767&rft_id=info:pmid/&rfr_iscdi=true