Structure-aware error-diffusion approach using entropy-constrained threshold modulation
Error diffusion is known as a commonly used digital halftoning technique. We present a novel and efficient error-diffusion algorithm which is capable of preserving appreciable structures and tones with blue-noise property. According to the theoretical analysis of threshold modulation, the extraction...
Gespeichert in:
Veröffentlicht in: | The Visual computer 2014-10, Vol.30 (10), p.1145-1156 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1156 |
---|---|
container_issue | 10 |
container_start_page | 1145 |
container_title | The Visual computer |
container_volume | 30 |
creator | Liu, Lingyue Chen, Wei Zheng, Wenting Geng, Weidong |
description | Error diffusion is known as a commonly used digital halftoning technique. We present a novel and efficient error-diffusion algorithm which is capable of preserving appreciable structures and tones with blue-noise property. According to the theoretical analysis of threshold modulation, the extraction of the high-frequency image contents is helpful to preserve human vision-sensitive textures. The pixel intensity’s influence on the structural distortion is observed based on a key statistic phenomenon. This effect leads to the non-uniform conservation of diversiform detail contents. To alleviate this influence, an entropy is introduced to measure the intensity’s impact and adaptively constrain the threshold-modulation strength. Compared with the existing edge-enhancement halftoning, our entropy-based method does not suffer from the failure to detect weak edges or improper emphasis of details. On the other hand, this structural improvement enables the modification of error-diffusion coefficients to eliminate visually harmful tonal artifacts, which results in the seamless integration with the best tone-aware techniques (Ostromoukhov in Proceedings of ACM SIGGRAPH, SIGGRAPH ’01, pp 567–572,
2001
, Zhou and Fang in ACM Trans Graph (TOG) 22(3):437–444,
2003
). Comparisons with the state-of-the-art structure-preserving error diffusions (Chang et al. in ACM Trans Graph (TOG) 28(5): 162:1–162:8,
2009
, Li and Mould in Forum 29(2):273–280,
2010
) indicate that our methods can achieve better structural similarity with better tone consistency. Our performance is one order of magnitude faster than (Chang et al. in ACM Trans Graph (TOG) 28(5): 162:1–162:8,
2009
, Li and Mould in Forum 29(2): 273–280,
2010
) while ensuring higher visual quality on typical images. Due to low computational overhead and high halftone quality, the proposed methods in this paper can be widely applicable in many practical applications. |
doi_str_mv | 10.1007/s00371-013-0895-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917981767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917981767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-73e9c4c14d1259887c86f71840c5678956c577832c6466741a9bdde4d73574cd3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2A62iek2QpxRcILlRchphk2intpN5kkP57U0Zw5epy4HznHg5Cl5RcU0LUTSaEK4oJ5ZhoIzE5QjMqOMOMU3mMZoQqjZnS5hSd5bwmVSthZujjtcDoywgRu28HsYkACXDou27MfRoat9tBcn7VVDksmzgUSLs99mnIBVw_xNCUFcS8SpvQbFMYN65U7hyddG6T48XvnaP3-7u3xSN-fnl4Wtw-Yy8kK1jxaLzwVATKpNFaed12impBvGxrW9l6qZTmzLeibZWgznyGEEVQXCrhA5-jqym3tvwaYy52nUYY6kvLDFVGU9Wq6qKTy0PKGWJnd9BvHewtJfawn532s3U_e9jPksqwicnVOywj_CX_D_0AtShzhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917981767</pqid></control><display><type>article</type><title>Structure-aware error-diffusion approach using entropy-constrained threshold modulation</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Liu, Lingyue ; Chen, Wei ; Zheng, Wenting ; Geng, Weidong</creator><creatorcontrib>Liu, Lingyue ; Chen, Wei ; Zheng, Wenting ; Geng, Weidong</creatorcontrib><description>Error diffusion is known as a commonly used digital halftoning technique. We present a novel and efficient error-diffusion algorithm which is capable of preserving appreciable structures and tones with blue-noise property. According to the theoretical analysis of threshold modulation, the extraction of the high-frequency image contents is helpful to preserve human vision-sensitive textures. The pixel intensity’s influence on the structural distortion is observed based on a key statistic phenomenon. This effect leads to the non-uniform conservation of diversiform detail contents. To alleviate this influence, an entropy is introduced to measure the intensity’s impact and adaptively constrain the threshold-modulation strength. Compared with the existing edge-enhancement halftoning, our entropy-based method does not suffer from the failure to detect weak edges or improper emphasis of details. On the other hand, this structural improvement enables the modification of error-diffusion coefficients to eliminate visually harmful tonal artifacts, which results in the seamless integration with the best tone-aware techniques (Ostromoukhov in Proceedings of ACM SIGGRAPH, SIGGRAPH ’01, pp 567–572,
2001
, Zhou and Fang in ACM Trans Graph (TOG) 22(3):437–444,
2003
). Comparisons with the state-of-the-art structure-preserving error diffusions (Chang et al. in ACM Trans Graph (TOG) 28(5): 162:1–162:8,
2009
, Li and Mould in Forum 29(2):273–280,
2010
) indicate that our methods can achieve better structural similarity with better tone consistency. Our performance is one order of magnitude faster than (Chang et al. in ACM Trans Graph (TOG) 28(5): 162:1–162:8,
2009
, Li and Mould in Forum 29(2): 273–280,
2010
) while ensuring higher visual quality on typical images. Due to low computational overhead and high halftone quality, the proposed methods in this paper can be widely applicable in many practical applications.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-013-0895-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Computer Graphics ; Computer Science ; Diffusion ; Entropy ; Errors ; Image Processing and Computer Vision ; Image quality ; Methods ; Modulation ; Molds ; Original Article</subject><ispartof>The Visual computer, 2014-10, Vol.30 (10), p.1145-1156</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Springer-Verlag Berlin Heidelberg 2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-73e9c4c14d1259887c86f71840c5678956c577832c6466741a9bdde4d73574cd3</citedby><cites>FETCH-LOGICAL-c452t-73e9c4c14d1259887c86f71840c5678956c577832c6466741a9bdde4d73574cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-013-0895-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917981767?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21369,27905,27906,33725,41469,42538,43786,51300,64364,64368,72218</link.rule.ids></links><search><creatorcontrib>Liu, Lingyue</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Zheng, Wenting</creatorcontrib><creatorcontrib>Geng, Weidong</creatorcontrib><title>Structure-aware error-diffusion approach using entropy-constrained threshold modulation</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>Error diffusion is known as a commonly used digital halftoning technique. We present a novel and efficient error-diffusion algorithm which is capable of preserving appreciable structures and tones with blue-noise property. According to the theoretical analysis of threshold modulation, the extraction of the high-frequency image contents is helpful to preserve human vision-sensitive textures. The pixel intensity’s influence on the structural distortion is observed based on a key statistic phenomenon. This effect leads to the non-uniform conservation of diversiform detail contents. To alleviate this influence, an entropy is introduced to measure the intensity’s impact and adaptively constrain the threshold-modulation strength. Compared with the existing edge-enhancement halftoning, our entropy-based method does not suffer from the failure to detect weak edges or improper emphasis of details. On the other hand, this structural improvement enables the modification of error-diffusion coefficients to eliminate visually harmful tonal artifacts, which results in the seamless integration with the best tone-aware techniques (Ostromoukhov in Proceedings of ACM SIGGRAPH, SIGGRAPH ’01, pp 567–572,
2001
, Zhou and Fang in ACM Trans Graph (TOG) 22(3):437–444,
2003
). Comparisons with the state-of-the-art structure-preserving error diffusions (Chang et al. in ACM Trans Graph (TOG) 28(5): 162:1–162:8,
2009
, Li and Mould in Forum 29(2):273–280,
2010
) indicate that our methods can achieve better structural similarity with better tone consistency. Our performance is one order of magnitude faster than (Chang et al. in ACM Trans Graph (TOG) 28(5): 162:1–162:8,
2009
, Li and Mould in Forum 29(2): 273–280,
2010
) while ensuring higher visual quality on typical images. Due to low computational overhead and high halftone quality, the proposed methods in this paper can be widely applicable in many practical applications.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Diffusion</subject><subject>Entropy</subject><subject>Errors</subject><subject>Image Processing and Computer Vision</subject><subject>Image quality</subject><subject>Methods</subject><subject>Modulation</subject><subject>Molds</subject><subject>Original Article</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wN2A62iek2QpxRcILlRchphk2intpN5kkP57U0Zw5epy4HznHg5Cl5RcU0LUTSaEK4oJ5ZhoIzE5QjMqOMOMU3mMZoQqjZnS5hSd5bwmVSthZujjtcDoywgRu28HsYkACXDou27MfRoat9tBcn7VVDksmzgUSLs99mnIBVw_xNCUFcS8SpvQbFMYN65U7hyddG6T48XvnaP3-7u3xSN-fnl4Wtw-Yy8kK1jxaLzwVATKpNFaed12impBvGxrW9l6qZTmzLeibZWgznyGEEVQXCrhA5-jqym3tvwaYy52nUYY6kvLDFVGU9Wq6qKTy0PKGWJnd9BvHewtJfawn532s3U_e9jPksqwicnVOywj_CX_D_0AtShzhg</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Liu, Lingyue</creator><creator>Chen, Wei</creator><creator>Zheng, Wenting</creator><creator>Geng, Weidong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20141001</creationdate><title>Structure-aware error-diffusion approach using entropy-constrained threshold modulation</title><author>Liu, Lingyue ; Chen, Wei ; Zheng, Wenting ; Geng, Weidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-73e9c4c14d1259887c86f71840c5678956c577832c6466741a9bdde4d73574cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Diffusion</topic><topic>Entropy</topic><topic>Errors</topic><topic>Image Processing and Computer Vision</topic><topic>Image quality</topic><topic>Methods</topic><topic>Modulation</topic><topic>Molds</topic><topic>Original Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Lingyue</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Zheng, Wenting</creatorcontrib><creatorcontrib>Geng, Weidong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Lingyue</au><au>Chen, Wei</au><au>Zheng, Wenting</au><au>Geng, Weidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure-aware error-diffusion approach using entropy-constrained threshold modulation</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>30</volume><issue>10</issue><spage>1145</spage><epage>1156</epage><pages>1145-1156</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>Error diffusion is known as a commonly used digital halftoning technique. We present a novel and efficient error-diffusion algorithm which is capable of preserving appreciable structures and tones with blue-noise property. According to the theoretical analysis of threshold modulation, the extraction of the high-frequency image contents is helpful to preserve human vision-sensitive textures. The pixel intensity’s influence on the structural distortion is observed based on a key statistic phenomenon. This effect leads to the non-uniform conservation of diversiform detail contents. To alleviate this influence, an entropy is introduced to measure the intensity’s impact and adaptively constrain the threshold-modulation strength. Compared with the existing edge-enhancement halftoning, our entropy-based method does not suffer from the failure to detect weak edges or improper emphasis of details. On the other hand, this structural improvement enables the modification of error-diffusion coefficients to eliminate visually harmful tonal artifacts, which results in the seamless integration with the best tone-aware techniques (Ostromoukhov in Proceedings of ACM SIGGRAPH, SIGGRAPH ’01, pp 567–572,
2001
, Zhou and Fang in ACM Trans Graph (TOG) 22(3):437–444,
2003
). Comparisons with the state-of-the-art structure-preserving error diffusions (Chang et al. in ACM Trans Graph (TOG) 28(5): 162:1–162:8,
2009
, Li and Mould in Forum 29(2):273–280,
2010
) indicate that our methods can achieve better structural similarity with better tone consistency. Our performance is one order of magnitude faster than (Chang et al. in ACM Trans Graph (TOG) 28(5): 162:1–162:8,
2009
, Li and Mould in Forum 29(2): 273–280,
2010
) while ensuring higher visual quality on typical images. Due to low computational overhead and high halftone quality, the proposed methods in this paper can be widely applicable in many practical applications.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-013-0895-0</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-2789 |
ispartof | The Visual computer, 2014-10, Vol.30 (10), p.1145-1156 |
issn | 0178-2789 1432-2315 |
language | eng |
recordid | cdi_proquest_journals_2917981767 |
source | SpringerLink Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Algorithms Artificial Intelligence Computer Graphics Computer Science Diffusion Entropy Errors Image Processing and Computer Vision Image quality Methods Modulation Molds Original Article |
title | Structure-aware error-diffusion approach using entropy-constrained threshold modulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A12%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure-aware%20error-diffusion%20approach%20using%20entropy-constrained%20threshold%20modulation&rft.jtitle=The%20Visual%20computer&rft.au=Liu,%20Lingyue&rft.date=2014-10-01&rft.volume=30&rft.issue=10&rft.spage=1145&rft.epage=1156&rft.pages=1145-1156&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-013-0895-0&rft_dat=%3Cproquest_cross%3E2917981767%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917981767&rft_id=info:pmid/&rfr_iscdi=true |