Investigations on lithium acetate-doped PVA/PVP solid polymer blend electrolytes
Lithium ion conducting solid polymer blend electrolytes (SPBE) are prepared using the host polymers poly[vinylalcohol] (PVA), poly[vinyl pyrrolidone] (PVP) and the lithium acetate. The complexation between the polymers and salt is confirmed by X-ray diffraction (XRD) and Fourier transform infrared s...
Gespeichert in:
Veröffentlicht in: | Polymer bulletin (Berlin, Germany) Germany), 2019-11, Vol.76 (11), p.5577-5602 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5602 |
---|---|
container_issue | 11 |
container_start_page | 5577 |
container_title | Polymer bulletin (Berlin, Germany) |
container_volume | 76 |
creator | Sundaramahalingam, K. Muthuvinayagam, M. Nallamuthu, N. Vanitha, D. Vahini, M. |
description | Lithium ion conducting solid polymer blend electrolytes (SPBE) are prepared using the host polymers poly[vinylalcohol] (PVA), poly[vinyl pyrrolidone] (PVP) and the lithium acetate. The complexation between the polymers and salt is confirmed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The glass transition temperature of the prepared polymer electrolytes is determined by differential scanning calorimeter. Surface morphology of the polymer electrolytes is identified by scanning electron microscopy. Ionic conductivity of the solid electrolytes is studied using impedance analyzer in the frequency range of 42 Hz–1 MHz. The higher electrical conductivity of 5.79 × 10
−6
S cm
−1
and 1.400 × 10
−4
S cm
−1
is determined for 50PVA:50PVP:25 wt% lithium acetate system at 303 K and 363 K temperature, respectively. The dielectric and loss tangent analysis is also carried out for prepared polymer electrolyte and the higher-conductivity sample at different temperatures. The transference numbers of polymer electrolytes are calculated by Wagner’s polarizing technique and also confirmed by Bruce–Vincent technique. |
doi_str_mv | 10.1007/s00289-018-02670-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917978432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917978432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a6895e10bf6f8009cbfd89fdd1bf974fb9bdf553bd16abe0e9fea4b26332e2693</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXA9dg8ppnJshQfhYKz0G5DMrmpU6aTmqRC_73REdy5utzDOedyP4RuKbmnhFSzSAirZUFoXRAmKlKwMzShJRcFK0t5jiaEZpHUXF6iqxh3JO9C0AlqVsMnxNRtder8ELEfcN-l9-64x7qFpBMU1h_A4mazmDWbBkffdxYffH_aQ8Cmh8Fi6KFNIUsJ4jW6cLqPcPM7p-jt8eF1-VysX55Wy8W6aDmVqdCilnOgxDjhakJka5ytpbOWGier0hlprJvPubFUaAMEpANdGiY4Z8CE5FN0N_Yegv845hfUzh_DkE8qJmklq7rkLLvY6GqDjzGAU4fQ7XU4KUrUNzk1klOZnPohp75DfAzFbB62EP6q_0l9AQkdcj8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917978432</pqid></control><display><type>article</type><title>Investigations on lithium acetate-doped PVA/PVP solid polymer blend electrolytes</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Sundaramahalingam, K. ; Muthuvinayagam, M. ; Nallamuthu, N. ; Vanitha, D. ; Vahini, M.</creator><creatorcontrib>Sundaramahalingam, K. ; Muthuvinayagam, M. ; Nallamuthu, N. ; Vanitha, D. ; Vahini, M.</creatorcontrib><description>Lithium ion conducting solid polymer blend electrolytes (SPBE) are prepared using the host polymers poly[vinylalcohol] (PVA), poly[vinyl pyrrolidone] (PVP) and the lithium acetate. The complexation between the polymers and salt is confirmed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The glass transition temperature of the prepared polymer electrolytes is determined by differential scanning calorimeter. Surface morphology of the polymer electrolytes is identified by scanning electron microscopy. Ionic conductivity of the solid electrolytes is studied using impedance analyzer in the frequency range of 42 Hz–1 MHz. The higher electrical conductivity of 5.79 × 10
−6
S cm
−1
and 1.400 × 10
−4
S cm
−1
is determined for 50PVA:50PVP:25 wt% lithium acetate system at 303 K and 363 K temperature, respectively. The dielectric and loss tangent analysis is also carried out for prepared polymer electrolyte and the higher-conductivity sample at different temperatures. The transference numbers of polymer electrolytes are calculated by Wagner’s polarizing technique and also confirmed by Bruce–Vincent technique.</description><identifier>ISSN: 0170-0839</identifier><identifier>EISSN: 1436-2449</identifier><identifier>DOI: 10.1007/s00289-018-02670-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Complex Fluids and Microfluidics ; Electrical resistivity ; Electrolytes ; Fourier transforms ; Frequency ranges ; Glass transition temperature ; Ion currents ; Lithium ; Lithium ions ; Molten salt electrolytes ; Organic Chemistry ; Original Paper ; Physical Chemistry ; Polyethylene glycol ; Polymer blends ; Polymer Sciences ; Polymers ; Polyvinyl alcohol ; Soft and Granular Matter ; Solid electrolytes ; Spectrum analysis</subject><ispartof>Polymer bulletin (Berlin, Germany), 2019-11, Vol.76 (11), p.5577-5602</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a6895e10bf6f8009cbfd89fdd1bf974fb9bdf553bd16abe0e9fea4b26332e2693</citedby><cites>FETCH-LOGICAL-c319t-a6895e10bf6f8009cbfd89fdd1bf974fb9bdf553bd16abe0e9fea4b26332e2693</cites><orcidid>0000-0002-3622-794X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00289-018-02670-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917978432?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Sundaramahalingam, K.</creatorcontrib><creatorcontrib>Muthuvinayagam, M.</creatorcontrib><creatorcontrib>Nallamuthu, N.</creatorcontrib><creatorcontrib>Vanitha, D.</creatorcontrib><creatorcontrib>Vahini, M.</creatorcontrib><title>Investigations on lithium acetate-doped PVA/PVP solid polymer blend electrolytes</title><title>Polymer bulletin (Berlin, Germany)</title><addtitle>Polym. Bull</addtitle><description>Lithium ion conducting solid polymer blend electrolytes (SPBE) are prepared using the host polymers poly[vinylalcohol] (PVA), poly[vinyl pyrrolidone] (PVP) and the lithium acetate. The complexation between the polymers and salt is confirmed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The glass transition temperature of the prepared polymer electrolytes is determined by differential scanning calorimeter. Surface morphology of the polymer electrolytes is identified by scanning electron microscopy. Ionic conductivity of the solid electrolytes is studied using impedance analyzer in the frequency range of 42 Hz–1 MHz. The higher electrical conductivity of 5.79 × 10
−6
S cm
−1
and 1.400 × 10
−4
S cm
−1
is determined for 50PVA:50PVP:25 wt% lithium acetate system at 303 K and 363 K temperature, respectively. The dielectric and loss tangent analysis is also carried out for prepared polymer electrolyte and the higher-conductivity sample at different temperatures. The transference numbers of polymer electrolytes are calculated by Wagner’s polarizing technique and also confirmed by Bruce–Vincent technique.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Complex Fluids and Microfluidics</subject><subject>Electrical resistivity</subject><subject>Electrolytes</subject><subject>Fourier transforms</subject><subject>Frequency ranges</subject><subject>Glass transition temperature</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>Lithium ions</subject><subject>Molten salt electrolytes</subject><subject>Organic Chemistry</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Polyethylene glycol</subject><subject>Polymer blends</subject><subject>Polymer Sciences</subject><subject>Polymers</subject><subject>Polyvinyl alcohol</subject><subject>Soft and Granular Matter</subject><subject>Solid electrolytes</subject><subject>Spectrum analysis</subject><issn>0170-0839</issn><issn>1436-2449</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXA9dg8ppnJshQfhYKz0G5DMrmpU6aTmqRC_73REdy5utzDOedyP4RuKbmnhFSzSAirZUFoXRAmKlKwMzShJRcFK0t5jiaEZpHUXF6iqxh3JO9C0AlqVsMnxNRtder8ELEfcN-l9-64x7qFpBMU1h_A4mazmDWbBkffdxYffH_aQ8Cmh8Fi6KFNIUsJ4jW6cLqPcPM7p-jt8eF1-VysX55Wy8W6aDmVqdCilnOgxDjhakJka5ytpbOWGier0hlprJvPubFUaAMEpANdGiY4Z8CE5FN0N_Yegv845hfUzh_DkE8qJmklq7rkLLvY6GqDjzGAU4fQ7XU4KUrUNzk1klOZnPohp75DfAzFbB62EP6q_0l9AQkdcj8</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Sundaramahalingam, K.</creator><creator>Muthuvinayagam, M.</creator><creator>Nallamuthu, N.</creator><creator>Vanitha, D.</creator><creator>Vahini, M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-3622-794X</orcidid></search><sort><creationdate>20191101</creationdate><title>Investigations on lithium acetate-doped PVA/PVP solid polymer blend electrolytes</title><author>Sundaramahalingam, K. ; Muthuvinayagam, M. ; Nallamuthu, N. ; Vanitha, D. ; Vahini, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a6895e10bf6f8009cbfd89fdd1bf974fb9bdf553bd16abe0e9fea4b26332e2693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Complex Fluids and Microfluidics</topic><topic>Electrical resistivity</topic><topic>Electrolytes</topic><topic>Fourier transforms</topic><topic>Frequency ranges</topic><topic>Glass transition temperature</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>Lithium ions</topic><topic>Molten salt electrolytes</topic><topic>Organic Chemistry</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Polyethylene glycol</topic><topic>Polymer blends</topic><topic>Polymer Sciences</topic><topic>Polymers</topic><topic>Polyvinyl alcohol</topic><topic>Soft and Granular Matter</topic><topic>Solid electrolytes</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sundaramahalingam, K.</creatorcontrib><creatorcontrib>Muthuvinayagam, M.</creatorcontrib><creatorcontrib>Nallamuthu, N.</creatorcontrib><creatorcontrib>Vanitha, D.</creatorcontrib><creatorcontrib>Vahini, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Polymer bulletin (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sundaramahalingam, K.</au><au>Muthuvinayagam, M.</au><au>Nallamuthu, N.</au><au>Vanitha, D.</au><au>Vahini, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigations on lithium acetate-doped PVA/PVP solid polymer blend electrolytes</atitle><jtitle>Polymer bulletin (Berlin, Germany)</jtitle><stitle>Polym. Bull</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>76</volume><issue>11</issue><spage>5577</spage><epage>5602</epage><pages>5577-5602</pages><issn>0170-0839</issn><eissn>1436-2449</eissn><abstract>Lithium ion conducting solid polymer blend electrolytes (SPBE) are prepared using the host polymers poly[vinylalcohol] (PVA), poly[vinyl pyrrolidone] (PVP) and the lithium acetate. The complexation between the polymers and salt is confirmed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The glass transition temperature of the prepared polymer electrolytes is determined by differential scanning calorimeter. Surface morphology of the polymer electrolytes is identified by scanning electron microscopy. Ionic conductivity of the solid electrolytes is studied using impedance analyzer in the frequency range of 42 Hz–1 MHz. The higher electrical conductivity of 5.79 × 10
−6
S cm
−1
and 1.400 × 10
−4
S cm
−1
is determined for 50PVA:50PVP:25 wt% lithium acetate system at 303 K and 363 K temperature, respectively. The dielectric and loss tangent analysis is also carried out for prepared polymer electrolyte and the higher-conductivity sample at different temperatures. The transference numbers of polymer electrolytes are calculated by Wagner’s polarizing technique and also confirmed by Bruce–Vincent technique.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00289-018-02670-2</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-3622-794X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-0839 |
ispartof | Polymer bulletin (Berlin, Germany), 2019-11, Vol.76 (11), p.5577-5602 |
issn | 0170-0839 1436-2449 |
language | eng |
recordid | cdi_proquest_journals_2917978432 |
source | SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Complex Fluids and Microfluidics Electrical resistivity Electrolytes Fourier transforms Frequency ranges Glass transition temperature Ion currents Lithium Lithium ions Molten salt electrolytes Organic Chemistry Original Paper Physical Chemistry Polyethylene glycol Polymer blends Polymer Sciences Polymers Polyvinyl alcohol Soft and Granular Matter Solid electrolytes Spectrum analysis |
title | Investigations on lithium acetate-doped PVA/PVP solid polymer blend electrolytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A44%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigations%20on%20lithium%20acetate-doped%20PVA/PVP%20solid%20polymer%20blend%20electrolytes&rft.jtitle=Polymer%20bulletin%20(Berlin,%20Germany)&rft.au=Sundaramahalingam,%20K.&rft.date=2019-11-01&rft.volume=76&rft.issue=11&rft.spage=5577&rft.epage=5602&rft.pages=5577-5602&rft.issn=0170-0839&rft.eissn=1436-2449&rft_id=info:doi/10.1007/s00289-018-02670-2&rft_dat=%3Cproquest_cross%3E2917978432%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917978432&rft_id=info:pmid/&rfr_iscdi=true |