A two-level clustering approach for multidimensional transfer function specification in volume visualization
Multidimensional transfer functions can perform more sophisticated classification of volumetric objects compared to 1-D transfer functions. However, visualizing and manipulating the transfer function space is non-intuitive when its dimension goes beyond 3-D, thus making user interaction difficult. I...
Gespeichert in:
Veröffentlicht in: | The Visual computer 2017-02, Vol.33 (2), p.163-177 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 177 |
---|---|
container_issue | 2 |
container_start_page | 163 |
container_title | The Visual computer |
container_volume | 33 |
creator | Cai, Lile Nguyen, Binh P. Chui, Chee-Kong Ong, Sim-Heng |
description | Multidimensional transfer functions can perform more sophisticated classification of volumetric objects compared to 1-D transfer functions. However, visualizing and manipulating the transfer function space is non-intuitive when its dimension goes beyond 3-D, thus making user interaction difficult. In this paper, we propose to address the multidimensional transfer function design problem by taking a two-level clustering approach, where the first-level clustering by the self-organizing map (SOM) projects high-dimensional feature data to a 2-D topology preserving map, and the second-level clustering on the SOM neurons reduces the design freedom from a large number of SOM neurons to a manageable number of clusters. Based on the two-level clustering results, we propose a novel volume exploration scheme that provides top-down navigation to users exploring the volume. Guided by an informative volume overview, interesting structures in the volume are discovered interactively by the user selecting clusters to visualize and modifying the clustering results when necessary. Our interface keeps track of each interesting structure discovered, which not only enables users to inspect individual structures closely, but also allows them to compose the final visualization by fusing the structures deemed important. |
doi_str_mv | 10.1007/s00371-015-1167-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917976585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917976585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8a9b02a16fc56beae89df3f06a48b3a91fe0f58646008fcc6c9d4e2b8473cf5f3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3AdTSZTF7LUnxBwY2uQyZNNCXzMJmpjL_eaUdw5epyLucc7v0AuCb4lmAs7jLGVBCECUOEcIHGE7AgJS1QQQk7BQtMhESFkOocXOS8w5MWpVqAuIL9V4ui27sIbRxy71Jo3qHputQa-wF9m2A9xD5sQ-2aHNrGRNgn02TvEvRDY_tpB3PnbPDBmqMKDdy3cagd3Ic8mBi-j_tLcOZNzO7qdy7B28P96_oJbV4en9erDbKUqR5JoypcGMK9Zbxyxkm19dRjbkpZUaOId9gzyUuOsfTWcqu2pSsqWQpqPfN0CW7m3umHz8HlXu_aIU2HZ10oIpTgTLLJRWaXTW3OyXndpVCbNGqC9QGqnqHqCao-QNXjlCnmTO4OmFz6a_4_9AMca34a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917976585</pqid></control><display><type>article</type><title>A two-level clustering approach for multidimensional transfer function specification in volume visualization</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Cai, Lile ; Nguyen, Binh P. ; Chui, Chee-Kong ; Ong, Sim-Heng</creator><creatorcontrib>Cai, Lile ; Nguyen, Binh P. ; Chui, Chee-Kong ; Ong, Sim-Heng</creatorcontrib><description>Multidimensional transfer functions can perform more sophisticated classification of volumetric objects compared to 1-D transfer functions. However, visualizing and manipulating the transfer function space is non-intuitive when its dimension goes beyond 3-D, thus making user interaction difficult. In this paper, we propose to address the multidimensional transfer function design problem by taking a two-level clustering approach, where the first-level clustering by the self-organizing map (SOM) projects high-dimensional feature data to a 2-D topology preserving map, and the second-level clustering on the SOM neurons reduces the design freedom from a large number of SOM neurons to a manageable number of clusters. Based on the two-level clustering results, we propose a novel volume exploration scheme that provides top-down navigation to users exploring the volume. Guided by an informative volume overview, interesting structures in the volume are discovered interactively by the user selecting clusters to visualize and modifying the clustering results when necessary. Our interface keeps track of each interesting structure discovered, which not only enables users to inspect individual structures closely, but also allows them to compose the final visualization by fusing the structures deemed important.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-015-1167-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Classification ; Clustering ; Computer Graphics ; Computer Science ; Design ; Function space ; Image Processing and Computer Vision ; Machine learning ; Methods ; Neurons ; Optical properties ; Optimization techniques ; Original Article ; Self organizing maps ; Topology ; Transfer functions ; Visualization</subject><ispartof>The Visual computer, 2017-02, Vol.33 (2), p.163-177</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Springer-Verlag Berlin Heidelberg 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-8a9b02a16fc56beae89df3f06a48b3a91fe0f58646008fcc6c9d4e2b8473cf5f3</citedby><cites>FETCH-LOGICAL-c359t-8a9b02a16fc56beae89df3f06a48b3a91fe0f58646008fcc6c9d4e2b8473cf5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-015-1167-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917976585?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Cai, Lile</creatorcontrib><creatorcontrib>Nguyen, Binh P.</creatorcontrib><creatorcontrib>Chui, Chee-Kong</creatorcontrib><creatorcontrib>Ong, Sim-Heng</creatorcontrib><title>A two-level clustering approach for multidimensional transfer function specification in volume visualization</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>Multidimensional transfer functions can perform more sophisticated classification of volumetric objects compared to 1-D transfer functions. However, visualizing and manipulating the transfer function space is non-intuitive when its dimension goes beyond 3-D, thus making user interaction difficult. In this paper, we propose to address the multidimensional transfer function design problem by taking a two-level clustering approach, where the first-level clustering by the self-organizing map (SOM) projects high-dimensional feature data to a 2-D topology preserving map, and the second-level clustering on the SOM neurons reduces the design freedom from a large number of SOM neurons to a manageable number of clusters. Based on the two-level clustering results, we propose a novel volume exploration scheme that provides top-down navigation to users exploring the volume. Guided by an informative volume overview, interesting structures in the volume are discovered interactively by the user selecting clusters to visualize and modifying the clustering results when necessary. Our interface keeps track of each interesting structure discovered, which not only enables users to inspect individual structures closely, but also allows them to compose the final visualization by fusing the structures deemed important.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>Clustering</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Design</subject><subject>Function space</subject><subject>Image Processing and Computer Vision</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neurons</subject><subject>Optical properties</subject><subject>Optimization techniques</subject><subject>Original Article</subject><subject>Self organizing maps</subject><subject>Topology</subject><subject>Transfer functions</subject><subject>Visualization</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wF3AdTSZTF7LUnxBwY2uQyZNNCXzMJmpjL_eaUdw5epyLucc7v0AuCb4lmAs7jLGVBCECUOEcIHGE7AgJS1QQQk7BQtMhESFkOocXOS8w5MWpVqAuIL9V4ui27sIbRxy71Jo3qHputQa-wF9m2A9xD5sQ-2aHNrGRNgn02TvEvRDY_tpB3PnbPDBmqMKDdy3cagd3Ic8mBi-j_tLcOZNzO7qdy7B28P96_oJbV4en9erDbKUqR5JoypcGMK9Zbxyxkm19dRjbkpZUaOId9gzyUuOsfTWcqu2pSsqWQpqPfN0CW7m3umHz8HlXu_aIU2HZ10oIpTgTLLJRWaXTW3OyXndpVCbNGqC9QGqnqHqCao-QNXjlCnmTO4OmFz6a_4_9AMca34a</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Cai, Lile</creator><creator>Nguyen, Binh P.</creator><creator>Chui, Chee-Kong</creator><creator>Ong, Sim-Heng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20170201</creationdate><title>A two-level clustering approach for multidimensional transfer function specification in volume visualization</title><author>Cai, Lile ; Nguyen, Binh P. ; Chui, Chee-Kong ; Ong, Sim-Heng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8a9b02a16fc56beae89df3f06a48b3a91fe0f58646008fcc6c9d4e2b8473cf5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>Clustering</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Design</topic><topic>Function space</topic><topic>Image Processing and Computer Vision</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neurons</topic><topic>Optical properties</topic><topic>Optimization techniques</topic><topic>Original Article</topic><topic>Self organizing maps</topic><topic>Topology</topic><topic>Transfer functions</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Lile</creatorcontrib><creatorcontrib>Nguyen, Binh P.</creatorcontrib><creatorcontrib>Chui, Chee-Kong</creatorcontrib><creatorcontrib>Ong, Sim-Heng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Lile</au><au>Nguyen, Binh P.</au><au>Chui, Chee-Kong</au><au>Ong, Sim-Heng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A two-level clustering approach for multidimensional transfer function specification in volume visualization</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>33</volume><issue>2</issue><spage>163</spage><epage>177</epage><pages>163-177</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>Multidimensional transfer functions can perform more sophisticated classification of volumetric objects compared to 1-D transfer functions. However, visualizing and manipulating the transfer function space is non-intuitive when its dimension goes beyond 3-D, thus making user interaction difficult. In this paper, we propose to address the multidimensional transfer function design problem by taking a two-level clustering approach, where the first-level clustering by the self-organizing map (SOM) projects high-dimensional feature data to a 2-D topology preserving map, and the second-level clustering on the SOM neurons reduces the design freedom from a large number of SOM neurons to a manageable number of clusters. Based on the two-level clustering results, we propose a novel volume exploration scheme that provides top-down navigation to users exploring the volume. Guided by an informative volume overview, interesting structures in the volume are discovered interactively by the user selecting clusters to visualize and modifying the clustering results when necessary. Our interface keeps track of each interesting structure discovered, which not only enables users to inspect individual structures closely, but also allows them to compose the final visualization by fusing the structures deemed important.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-015-1167-y</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-2789 |
ispartof | The Visual computer, 2017-02, Vol.33 (2), p.163-177 |
issn | 0178-2789 1432-2315 |
language | eng |
recordid | cdi_proquest_journals_2917976585 |
source | SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Algorithms Artificial Intelligence Classification Clustering Computer Graphics Computer Science Design Function space Image Processing and Computer Vision Machine learning Methods Neurons Optical properties Optimization techniques Original Article Self organizing maps Topology Transfer functions Visualization |
title | A two-level clustering approach for multidimensional transfer function specification in volume visualization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A10%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20two-level%20clustering%20approach%20for%20multidimensional%20transfer%20function%20specification%20in%20volume%20visualization&rft.jtitle=The%20Visual%20computer&rft.au=Cai,%20Lile&rft.date=2017-02-01&rft.volume=33&rft.issue=2&rft.spage=163&rft.epage=177&rft.pages=163-177&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-015-1167-y&rft_dat=%3Cproquest_cross%3E2917976585%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917976585&rft_id=info:pmid/&rfr_iscdi=true |