A two-level clustering approach for multidimensional transfer function specification in volume visualization

Multidimensional transfer functions can perform more sophisticated classification of volumetric objects compared to 1-D transfer functions. However, visualizing and manipulating the transfer function space is non-intuitive when its dimension goes beyond 3-D, thus making user interaction difficult. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Visual computer 2017-02, Vol.33 (2), p.163-177
Hauptverfasser: Cai, Lile, Nguyen, Binh P., Chui, Chee-Kong, Ong, Sim-Heng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 177
container_issue 2
container_start_page 163
container_title The Visual computer
container_volume 33
creator Cai, Lile
Nguyen, Binh P.
Chui, Chee-Kong
Ong, Sim-Heng
description Multidimensional transfer functions can perform more sophisticated classification of volumetric objects compared to 1-D transfer functions. However, visualizing and manipulating the transfer function space is non-intuitive when its dimension goes beyond 3-D, thus making user interaction difficult. In this paper, we propose to address the multidimensional transfer function design problem by taking a two-level clustering approach, where the first-level clustering by the self-organizing map (SOM) projects high-dimensional feature data to a 2-D topology preserving map, and the second-level clustering on the SOM neurons reduces the design freedom from a large number of SOM neurons to a manageable number of clusters. Based on the two-level clustering results, we propose a novel volume exploration scheme that provides top-down navigation to users exploring the volume. Guided by an informative volume overview, interesting structures in the volume are discovered interactively by the user selecting clusters to visualize and modifying the clustering results when necessary. Our interface keeps track of each interesting structure discovered, which not only enables users to inspect individual structures closely, but also allows them to compose the final visualization by fusing the structures deemed important.
doi_str_mv 10.1007/s00371-015-1167-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917976585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917976585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8a9b02a16fc56beae89df3f06a48b3a91fe0f58646008fcc6c9d4e2b8473cf5f3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3AdTSZTF7LUnxBwY2uQyZNNCXzMJmpjL_eaUdw5epyLucc7v0AuCb4lmAs7jLGVBCECUOEcIHGE7AgJS1QQQk7BQtMhESFkOocXOS8w5MWpVqAuIL9V4ui27sIbRxy71Jo3qHputQa-wF9m2A9xD5sQ-2aHNrGRNgn02TvEvRDY_tpB3PnbPDBmqMKDdy3cagd3Ic8mBi-j_tLcOZNzO7qdy7B28P96_oJbV4en9erDbKUqR5JoypcGMK9Zbxyxkm19dRjbkpZUaOId9gzyUuOsfTWcqu2pSsqWQpqPfN0CW7m3umHz8HlXu_aIU2HZ10oIpTgTLLJRWaXTW3OyXndpVCbNGqC9QGqnqHqCao-QNXjlCnmTO4OmFz6a_4_9AMca34a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917976585</pqid></control><display><type>article</type><title>A two-level clustering approach for multidimensional transfer function specification in volume visualization</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Cai, Lile ; Nguyen, Binh P. ; Chui, Chee-Kong ; Ong, Sim-Heng</creator><creatorcontrib>Cai, Lile ; Nguyen, Binh P. ; Chui, Chee-Kong ; Ong, Sim-Heng</creatorcontrib><description>Multidimensional transfer functions can perform more sophisticated classification of volumetric objects compared to 1-D transfer functions. However, visualizing and manipulating the transfer function space is non-intuitive when its dimension goes beyond 3-D, thus making user interaction difficult. In this paper, we propose to address the multidimensional transfer function design problem by taking a two-level clustering approach, where the first-level clustering by the self-organizing map (SOM) projects high-dimensional feature data to a 2-D topology preserving map, and the second-level clustering on the SOM neurons reduces the design freedom from a large number of SOM neurons to a manageable number of clusters. Based on the two-level clustering results, we propose a novel volume exploration scheme that provides top-down navigation to users exploring the volume. Guided by an informative volume overview, interesting structures in the volume are discovered interactively by the user selecting clusters to visualize and modifying the clustering results when necessary. Our interface keeps track of each interesting structure discovered, which not only enables users to inspect individual structures closely, but also allows them to compose the final visualization by fusing the structures deemed important.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-015-1167-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Classification ; Clustering ; Computer Graphics ; Computer Science ; Design ; Function space ; Image Processing and Computer Vision ; Machine learning ; Methods ; Neurons ; Optical properties ; Optimization techniques ; Original Article ; Self organizing maps ; Topology ; Transfer functions ; Visualization</subject><ispartof>The Visual computer, 2017-02, Vol.33 (2), p.163-177</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Springer-Verlag Berlin Heidelberg 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-8a9b02a16fc56beae89df3f06a48b3a91fe0f58646008fcc6c9d4e2b8473cf5f3</citedby><cites>FETCH-LOGICAL-c359t-8a9b02a16fc56beae89df3f06a48b3a91fe0f58646008fcc6c9d4e2b8473cf5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-015-1167-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917976585?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Cai, Lile</creatorcontrib><creatorcontrib>Nguyen, Binh P.</creatorcontrib><creatorcontrib>Chui, Chee-Kong</creatorcontrib><creatorcontrib>Ong, Sim-Heng</creatorcontrib><title>A two-level clustering approach for multidimensional transfer function specification in volume visualization</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>Multidimensional transfer functions can perform more sophisticated classification of volumetric objects compared to 1-D transfer functions. However, visualizing and manipulating the transfer function space is non-intuitive when its dimension goes beyond 3-D, thus making user interaction difficult. In this paper, we propose to address the multidimensional transfer function design problem by taking a two-level clustering approach, where the first-level clustering by the self-organizing map (SOM) projects high-dimensional feature data to a 2-D topology preserving map, and the second-level clustering on the SOM neurons reduces the design freedom from a large number of SOM neurons to a manageable number of clusters. Based on the two-level clustering results, we propose a novel volume exploration scheme that provides top-down navigation to users exploring the volume. Guided by an informative volume overview, interesting structures in the volume are discovered interactively by the user selecting clusters to visualize and modifying the clustering results when necessary. Our interface keeps track of each interesting structure discovered, which not only enables users to inspect individual structures closely, but also allows them to compose the final visualization by fusing the structures deemed important.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>Clustering</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Design</subject><subject>Function space</subject><subject>Image Processing and Computer Vision</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neurons</subject><subject>Optical properties</subject><subject>Optimization techniques</subject><subject>Original Article</subject><subject>Self organizing maps</subject><subject>Topology</subject><subject>Transfer functions</subject><subject>Visualization</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wF3AdTSZTF7LUnxBwY2uQyZNNCXzMJmpjL_eaUdw5epyLucc7v0AuCb4lmAs7jLGVBCECUOEcIHGE7AgJS1QQQk7BQtMhESFkOocXOS8w5MWpVqAuIL9V4ui27sIbRxy71Jo3qHputQa-wF9m2A9xD5sQ-2aHNrGRNgn02TvEvRDY_tpB3PnbPDBmqMKDdy3cagd3Ic8mBi-j_tLcOZNzO7qdy7B28P96_oJbV4en9erDbKUqR5JoypcGMK9Zbxyxkm19dRjbkpZUaOId9gzyUuOsfTWcqu2pSsqWQpqPfN0CW7m3umHz8HlXu_aIU2HZ10oIpTgTLLJRWaXTW3OyXndpVCbNGqC9QGqnqHqCao-QNXjlCnmTO4OmFz6a_4_9AMca34a</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Cai, Lile</creator><creator>Nguyen, Binh P.</creator><creator>Chui, Chee-Kong</creator><creator>Ong, Sim-Heng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20170201</creationdate><title>A two-level clustering approach for multidimensional transfer function specification in volume visualization</title><author>Cai, Lile ; Nguyen, Binh P. ; Chui, Chee-Kong ; Ong, Sim-Heng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8a9b02a16fc56beae89df3f06a48b3a91fe0f58646008fcc6c9d4e2b8473cf5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>Clustering</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Design</topic><topic>Function space</topic><topic>Image Processing and Computer Vision</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neurons</topic><topic>Optical properties</topic><topic>Optimization techniques</topic><topic>Original Article</topic><topic>Self organizing maps</topic><topic>Topology</topic><topic>Transfer functions</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Lile</creatorcontrib><creatorcontrib>Nguyen, Binh P.</creatorcontrib><creatorcontrib>Chui, Chee-Kong</creatorcontrib><creatorcontrib>Ong, Sim-Heng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Lile</au><au>Nguyen, Binh P.</au><au>Chui, Chee-Kong</au><au>Ong, Sim-Heng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A two-level clustering approach for multidimensional transfer function specification in volume visualization</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>33</volume><issue>2</issue><spage>163</spage><epage>177</epage><pages>163-177</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>Multidimensional transfer functions can perform more sophisticated classification of volumetric objects compared to 1-D transfer functions. However, visualizing and manipulating the transfer function space is non-intuitive when its dimension goes beyond 3-D, thus making user interaction difficult. In this paper, we propose to address the multidimensional transfer function design problem by taking a two-level clustering approach, where the first-level clustering by the self-organizing map (SOM) projects high-dimensional feature data to a 2-D topology preserving map, and the second-level clustering on the SOM neurons reduces the design freedom from a large number of SOM neurons to a manageable number of clusters. Based on the two-level clustering results, we propose a novel volume exploration scheme that provides top-down navigation to users exploring the volume. Guided by an informative volume overview, interesting structures in the volume are discovered interactively by the user selecting clusters to visualize and modifying the clustering results when necessary. Our interface keeps track of each interesting structure discovered, which not only enables users to inspect individual structures closely, but also allows them to compose the final visualization by fusing the structures deemed important.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-015-1167-y</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-2789
ispartof The Visual computer, 2017-02, Vol.33 (2), p.163-177
issn 0178-2789
1432-2315
language eng
recordid cdi_proquest_journals_2917976585
source SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Algorithms
Artificial Intelligence
Classification
Clustering
Computer Graphics
Computer Science
Design
Function space
Image Processing and Computer Vision
Machine learning
Methods
Neurons
Optical properties
Optimization techniques
Original Article
Self organizing maps
Topology
Transfer functions
Visualization
title A two-level clustering approach for multidimensional transfer function specification in volume visualization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A10%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20two-level%20clustering%20approach%20for%20multidimensional%20transfer%20function%20specification%20in%20volume%20visualization&rft.jtitle=The%20Visual%20computer&rft.au=Cai,%20Lile&rft.date=2017-02-01&rft.volume=33&rft.issue=2&rft.spage=163&rft.epage=177&rft.pages=163-177&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-015-1167-y&rft_dat=%3Cproquest_cross%3E2917976585%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917976585&rft_id=info:pmid/&rfr_iscdi=true