DRCDN: learning deep residual convolutional dehazing networks

Single image dehazing, which is the process of removing haze from a single input image, is an important task in computer vision. This task is extremely challenging because it is massively ill-posed. In this paper, we propose a novel end-to-end deep residual convolutional dehazing network (DRCDN) bas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Visual computer 2020-09, Vol.36 (9), p.1797-1808
Hauptverfasser: Zhang, Shengdong, He, Fazhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1808
container_issue 9
container_start_page 1797
container_title The Visual computer
container_volume 36
creator Zhang, Shengdong
He, Fazhi
description Single image dehazing, which is the process of removing haze from a single input image, is an important task in computer vision. This task is extremely challenging because it is massively ill-posed. In this paper, we propose a novel end-to-end deep residual convolutional dehazing network (DRCDN) based on convolutional neural networks for single image dehazing, which consists of two subnetworks: one network is used for recovering a coarse clear image, and the other network is used to refine the result. The DRCDN firstly predicts the coarse clear image via a context aggregation subnetwork, which can capture global structure information. Subsequently, it adopts a novel hierarchical convolutional neural network to further refine the details of the clean image by integrating the local context information. The DRCDN is directly trained using complete images and the corresponding ground-truth haze-free images. Experimental results on synthetic datasets and natural hazy images demonstrate that the proposed method performs favorably against the state-of-the-art methods.
doi_str_mv 10.1007/s00371-019-01774-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917970657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917970657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-260f1d95f13e8218e7bae95c544939db4be0813c5df1b6e904725344d4d8a4283</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9F8bhLBg-z6BYuC6Dm0zXTtWps1aRX99aZbwZuHYZjhmZfhQeiYklNKiDqLhHBFMaEmlVIC6x00oYIzzDiVu2iSthozpc0-OohxTbaUmaCLxeN8cX-eNZCHtm5XmQPYZAFi7fq8yUrffvim72rfpsnBS_49QC10nz68xkO0V-VNhKPfPkXP11dP81u8fLi5m18uccmp6TCbkYo6IyvKQTOqQRU5GFlKIQw3rhAFEE15KV1FixkYIhSTXAgnnM4F03yKTsbcTfDvPcTOrn0f0kvRMkOVUWQmVaLYSJXBxxigsptQv-Xhy1JiB0121GSTJrsVYIdoPh7FBLcrCH_R_1z9AOsHaXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917970657</pqid></control><display><type>article</type><title>DRCDN: learning deep residual convolutional dehazing networks</title><source>Springer Online Journals Complete</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Zhang, Shengdong ; He, Fazhi</creator><creatorcontrib>Zhang, Shengdong ; He, Fazhi</creatorcontrib><description>Single image dehazing, which is the process of removing haze from a single input image, is an important task in computer vision. This task is extremely challenging because it is massively ill-posed. In this paper, we propose a novel end-to-end deep residual convolutional dehazing network (DRCDN) based on convolutional neural networks for single image dehazing, which consists of two subnetworks: one network is used for recovering a coarse clear image, and the other network is used to refine the result. The DRCDN firstly predicts the coarse clear image via a context aggregation subnetwork, which can capture global structure information. Subsequently, it adopts a novel hierarchical convolutional neural network to further refine the details of the clean image by integrating the local context information. The DRCDN is directly trained using complete images and the corresponding ground-truth haze-free images. Experimental results on synthetic datasets and natural hazy images demonstrate that the proposed method performs favorably against the state-of-the-art methods.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-019-01774-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Artificial neural networks ; Computer Graphics ; Computer Science ; Computer vision ; Context ; Haze ; Image Processing and Computer Vision ; Light ; Methods ; Neural networks ; Original Article ; Synthetic data</subject><ispartof>The Visual computer, 2020-09, Vol.36 (9), p.1797-1808</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-260f1d95f13e8218e7bae95c544939db4be0813c5df1b6e904725344d4d8a4283</citedby><cites>FETCH-LOGICAL-c319t-260f1d95f13e8218e7bae95c544939db4be0813c5df1b6e904725344d4d8a4283</cites><orcidid>0000-0001-9167-1683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-019-01774-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917970657?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Zhang, Shengdong</creatorcontrib><creatorcontrib>He, Fazhi</creatorcontrib><title>DRCDN: learning deep residual convolutional dehazing networks</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>Single image dehazing, which is the process of removing haze from a single input image, is an important task in computer vision. This task is extremely challenging because it is massively ill-posed. In this paper, we propose a novel end-to-end deep residual convolutional dehazing network (DRCDN) based on convolutional neural networks for single image dehazing, which consists of two subnetworks: one network is used for recovering a coarse clear image, and the other network is used to refine the result. The DRCDN firstly predicts the coarse clear image via a context aggregation subnetwork, which can capture global structure information. Subsequently, it adopts a novel hierarchical convolutional neural network to further refine the details of the clean image by integrating the local context information. The DRCDN is directly trained using complete images and the corresponding ground-truth haze-free images. Experimental results on synthetic datasets and natural hazy images demonstrate that the proposed method performs favorably against the state-of-the-art methods.</description><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Context</subject><subject>Haze</subject><subject>Image Processing and Computer Vision</subject><subject>Light</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Synthetic data</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9F8bhLBg-z6BYuC6Dm0zXTtWps1aRX99aZbwZuHYZjhmZfhQeiYklNKiDqLhHBFMaEmlVIC6x00oYIzzDiVu2iSthozpc0-OohxTbaUmaCLxeN8cX-eNZCHtm5XmQPYZAFi7fq8yUrffvim72rfpsnBS_49QC10nz68xkO0V-VNhKPfPkXP11dP81u8fLi5m18uccmp6TCbkYo6IyvKQTOqQRU5GFlKIQw3rhAFEE15KV1FixkYIhSTXAgnnM4F03yKTsbcTfDvPcTOrn0f0kvRMkOVUWQmVaLYSJXBxxigsptQv-Xhy1JiB0121GSTJrsVYIdoPh7FBLcrCH_R_1z9AOsHaXQ</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Zhang, Shengdong</creator><creator>He, Fazhi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-9167-1683</orcidid></search><sort><creationdate>20200901</creationdate><title>DRCDN: learning deep residual convolutional dehazing networks</title><author>Zhang, Shengdong ; He, Fazhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-260f1d95f13e8218e7bae95c544939db4be0813c5df1b6e904725344d4d8a4283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Context</topic><topic>Haze</topic><topic>Image Processing and Computer Vision</topic><topic>Light</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Synthetic data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shengdong</creatorcontrib><creatorcontrib>He, Fazhi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shengdong</au><au>He, Fazhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DRCDN: learning deep residual convolutional dehazing networks</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>36</volume><issue>9</issue><spage>1797</spage><epage>1808</epage><pages>1797-1808</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>Single image dehazing, which is the process of removing haze from a single input image, is an important task in computer vision. This task is extremely challenging because it is massively ill-posed. In this paper, we propose a novel end-to-end deep residual convolutional dehazing network (DRCDN) based on convolutional neural networks for single image dehazing, which consists of two subnetworks: one network is used for recovering a coarse clear image, and the other network is used to refine the result. The DRCDN firstly predicts the coarse clear image via a context aggregation subnetwork, which can capture global structure information. Subsequently, it adopts a novel hierarchical convolutional neural network to further refine the details of the clean image by integrating the local context information. The DRCDN is directly trained using complete images and the corresponding ground-truth haze-free images. Experimental results on synthetic datasets and natural hazy images demonstrate that the proposed method performs favorably against the state-of-the-art methods.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-019-01774-8</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9167-1683</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0178-2789
ispartof The Visual computer, 2020-09, Vol.36 (9), p.1797-1808
issn 0178-2789
1432-2315
language eng
recordid cdi_proquest_journals_2917970657
source Springer Online Journals Complete; ProQuest Central UK/Ireland; ProQuest Central
subjects Artificial Intelligence
Artificial neural networks
Computer Graphics
Computer Science
Computer vision
Context
Haze
Image Processing and Computer Vision
Light
Methods
Neural networks
Original Article
Synthetic data
title DRCDN: learning deep residual convolutional dehazing networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A48%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DRCDN:%20learning%20deep%20residual%20convolutional%20dehazing%20networks&rft.jtitle=The%20Visual%20computer&rft.au=Zhang,%20Shengdong&rft.date=2020-09-01&rft.volume=36&rft.issue=9&rft.spage=1797&rft.epage=1808&rft.pages=1797-1808&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-019-01774-8&rft_dat=%3Cproquest_cross%3E2917970657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917970657&rft_id=info:pmid/&rfr_iscdi=true