DRCDN: learning deep residual convolutional dehazing networks
Single image dehazing, which is the process of removing haze from a single input image, is an important task in computer vision. This task is extremely challenging because it is massively ill-posed. In this paper, we propose a novel end-to-end deep residual convolutional dehazing network (DRCDN) bas...
Gespeichert in:
Veröffentlicht in: | The Visual computer 2020-09, Vol.36 (9), p.1797-1808 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1808 |
---|---|
container_issue | 9 |
container_start_page | 1797 |
container_title | The Visual computer |
container_volume | 36 |
creator | Zhang, Shengdong He, Fazhi |
description | Single image dehazing, which is the process of removing haze from a single input image, is an important task in computer vision. This task is extremely challenging because it is massively ill-posed. In this paper, we propose a novel end-to-end deep residual convolutional dehazing network (DRCDN) based on convolutional neural networks for single image dehazing, which consists of two subnetworks: one network is used for recovering a coarse clear image, and the other network is used to refine the result. The DRCDN firstly predicts the coarse clear image via a context aggregation subnetwork, which can capture global structure information. Subsequently, it adopts a novel hierarchical convolutional neural network to further refine the details of the clean image by integrating the local context information. The DRCDN is directly trained using complete images and the corresponding ground-truth haze-free images. Experimental results on synthetic datasets and natural hazy images demonstrate that the proposed method performs favorably against the state-of-the-art methods. |
doi_str_mv | 10.1007/s00371-019-01774-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917970657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917970657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-260f1d95f13e8218e7bae95c544939db4be0813c5df1b6e904725344d4d8a4283</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9F8bhLBg-z6BYuC6Dm0zXTtWps1aRX99aZbwZuHYZjhmZfhQeiYklNKiDqLhHBFMaEmlVIC6x00oYIzzDiVu2iSthozpc0-OohxTbaUmaCLxeN8cX-eNZCHtm5XmQPYZAFi7fq8yUrffvim72rfpsnBS_49QC10nz68xkO0V-VNhKPfPkXP11dP81u8fLi5m18uccmp6TCbkYo6IyvKQTOqQRU5GFlKIQw3rhAFEE15KV1FixkYIhSTXAgnnM4F03yKTsbcTfDvPcTOrn0f0kvRMkOVUWQmVaLYSJXBxxigsptQv-Xhy1JiB0121GSTJrsVYIdoPh7FBLcrCH_R_1z9AOsHaXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917970657</pqid></control><display><type>article</type><title>DRCDN: learning deep residual convolutional dehazing networks</title><source>Springer Online Journals Complete</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Zhang, Shengdong ; He, Fazhi</creator><creatorcontrib>Zhang, Shengdong ; He, Fazhi</creatorcontrib><description>Single image dehazing, which is the process of removing haze from a single input image, is an important task in computer vision. This task is extremely challenging because it is massively ill-posed. In this paper, we propose a novel end-to-end deep residual convolutional dehazing network (DRCDN) based on convolutional neural networks for single image dehazing, which consists of two subnetworks: one network is used for recovering a coarse clear image, and the other network is used to refine the result. The DRCDN firstly predicts the coarse clear image via a context aggregation subnetwork, which can capture global structure information. Subsequently, it adopts a novel hierarchical convolutional neural network to further refine the details of the clean image by integrating the local context information. The DRCDN is directly trained using complete images and the corresponding ground-truth haze-free images. Experimental results on synthetic datasets and natural hazy images demonstrate that the proposed method performs favorably against the state-of-the-art methods.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-019-01774-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Artificial neural networks ; Computer Graphics ; Computer Science ; Computer vision ; Context ; Haze ; Image Processing and Computer Vision ; Light ; Methods ; Neural networks ; Original Article ; Synthetic data</subject><ispartof>The Visual computer, 2020-09, Vol.36 (9), p.1797-1808</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-260f1d95f13e8218e7bae95c544939db4be0813c5df1b6e904725344d4d8a4283</citedby><cites>FETCH-LOGICAL-c319t-260f1d95f13e8218e7bae95c544939db4be0813c5df1b6e904725344d4d8a4283</cites><orcidid>0000-0001-9167-1683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-019-01774-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917970657?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Zhang, Shengdong</creatorcontrib><creatorcontrib>He, Fazhi</creatorcontrib><title>DRCDN: learning deep residual convolutional dehazing networks</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>Single image dehazing, which is the process of removing haze from a single input image, is an important task in computer vision. This task is extremely challenging because it is massively ill-posed. In this paper, we propose a novel end-to-end deep residual convolutional dehazing network (DRCDN) based on convolutional neural networks for single image dehazing, which consists of two subnetworks: one network is used for recovering a coarse clear image, and the other network is used to refine the result. The DRCDN firstly predicts the coarse clear image via a context aggregation subnetwork, which can capture global structure information. Subsequently, it adopts a novel hierarchical convolutional neural network to further refine the details of the clean image by integrating the local context information. The DRCDN is directly trained using complete images and the corresponding ground-truth haze-free images. Experimental results on synthetic datasets and natural hazy images demonstrate that the proposed method performs favorably against the state-of-the-art methods.</description><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Context</subject><subject>Haze</subject><subject>Image Processing and Computer Vision</subject><subject>Light</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Synthetic data</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9F8bhLBg-z6BYuC6Dm0zXTtWps1aRX99aZbwZuHYZjhmZfhQeiYklNKiDqLhHBFMaEmlVIC6x00oYIzzDiVu2iSthozpc0-OohxTbaUmaCLxeN8cX-eNZCHtm5XmQPYZAFi7fq8yUrffvim72rfpsnBS_49QC10nz68xkO0V-VNhKPfPkXP11dP81u8fLi5m18uccmp6TCbkYo6IyvKQTOqQRU5GFlKIQw3rhAFEE15KV1FixkYIhSTXAgnnM4F03yKTsbcTfDvPcTOrn0f0kvRMkOVUWQmVaLYSJXBxxigsptQv-Xhy1JiB0121GSTJrsVYIdoPh7FBLcrCH_R_1z9AOsHaXQ</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Zhang, Shengdong</creator><creator>He, Fazhi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-9167-1683</orcidid></search><sort><creationdate>20200901</creationdate><title>DRCDN: learning deep residual convolutional dehazing networks</title><author>Zhang, Shengdong ; He, Fazhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-260f1d95f13e8218e7bae95c544939db4be0813c5df1b6e904725344d4d8a4283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Context</topic><topic>Haze</topic><topic>Image Processing and Computer Vision</topic><topic>Light</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Synthetic data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shengdong</creatorcontrib><creatorcontrib>He, Fazhi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shengdong</au><au>He, Fazhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DRCDN: learning deep residual convolutional dehazing networks</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>36</volume><issue>9</issue><spage>1797</spage><epage>1808</epage><pages>1797-1808</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>Single image dehazing, which is the process of removing haze from a single input image, is an important task in computer vision. This task is extremely challenging because it is massively ill-posed. In this paper, we propose a novel end-to-end deep residual convolutional dehazing network (DRCDN) based on convolutional neural networks for single image dehazing, which consists of two subnetworks: one network is used for recovering a coarse clear image, and the other network is used to refine the result. The DRCDN firstly predicts the coarse clear image via a context aggregation subnetwork, which can capture global structure information. Subsequently, it adopts a novel hierarchical convolutional neural network to further refine the details of the clean image by integrating the local context information. The DRCDN is directly trained using complete images and the corresponding ground-truth haze-free images. Experimental results on synthetic datasets and natural hazy images demonstrate that the proposed method performs favorably against the state-of-the-art methods.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-019-01774-8</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9167-1683</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-2789 |
ispartof | The Visual computer, 2020-09, Vol.36 (9), p.1797-1808 |
issn | 0178-2789 1432-2315 |
language | eng |
recordid | cdi_proquest_journals_2917970657 |
source | Springer Online Journals Complete; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Artificial Intelligence Artificial neural networks Computer Graphics Computer Science Computer vision Context Haze Image Processing and Computer Vision Light Methods Neural networks Original Article Synthetic data |
title | DRCDN: learning deep residual convolutional dehazing networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A48%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DRCDN:%20learning%20deep%20residual%20convolutional%20dehazing%20networks&rft.jtitle=The%20Visual%20computer&rft.au=Zhang,%20Shengdong&rft.date=2020-09-01&rft.volume=36&rft.issue=9&rft.spage=1797&rft.epage=1808&rft.pages=1797-1808&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-019-01774-8&rft_dat=%3Cproquest_cross%3E2917970657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917970657&rft_id=info:pmid/&rfr_iscdi=true |