Shear strength prediction of reinforced concrete beams by baseline, ensemble, and hybrid machine learning models

The shear strength of reinforced concrete (RC) beams is critical in the design of structural members. Developing an effective mathematical method for accurately estimating shear strength of RC beams is beneficial for civil engineers. This work presents a hybrid artificial intelligent (AI) model for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2020-03, Vol.24 (5), p.3393-3411
Hauptverfasser: Chou, Jui-Sheng, Pham, Thi-Phuong-Trang, Nguyen, Thi-Kha, Pham, Anh-Duc, Ngo, Ngoc-Tri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3411
container_issue 5
container_start_page 3393
container_title Soft computing (Berlin, Germany)
container_volume 24
creator Chou, Jui-Sheng
Pham, Thi-Phuong-Trang
Nguyen, Thi-Kha
Pham, Anh-Duc
Ngo, Ngoc-Tri
description The shear strength of reinforced concrete (RC) beams is critical in the design of structural members. Developing an effective mathematical method for accurately estimating shear strength of RC beams is beneficial for civil engineers. This work presents a hybrid artificial intelligent (AI) model for effectively predicting the shear strength of various types of RC beam. The hybrid AI model was developed by integrating an optimization algorithm [smart firefly algorithm (SFA)] and machine learning [least squares support vector regression (LSSVR)], in which the SFA was used to optimize the hyperparameters of LSSVR, improving its predictive accuracy. Three large datasets were used to train and test the hybrid AI model in predicting shear strength of RC beams. The predictive accuracy of the hybrid AI model was compared comprehensively with those of single AI models, ensemble AI models, and empirical methods. The comparison results show that the hybrid AI model outperformed the others in predicting the shear strength of a wide range of RC beam types. In particular, with the test data of RC beams without stirrups, the hybrid AI model yielded a mean absolute percentage error (MAPE) of 21.703%. In predicting shear strength of RC beams with stirrups, the hybrid AI model yielded an MAPE of 12.941%. For RC beams with FRP reinforcement, the hybrid AI model yielded an MAPE 18.951%. Therefore, this hybrid AI model can be a better alternative method to help civil engineers in designing RC beams.
doi_str_mv 10.1007/s00500-019-04103-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917959294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917959294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-52d8bd7779dd032b85af79f0bed2715af3131d81bb1be411811919baf6b719053</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYsouK5-AU8Br1YzSbtpjrL4DxY8qOeQNNNtlzapSfew3964Fbx5mjfMe2_gl2XXQO-AUnEfKS0pzSnInBZAec5OsgUUnOeiEPL0qFkuVgU_zy5i3FHKQJR8kY3vLepA4hTQbaeWjAFtV0-dd8Q3JGDnGh9qtKT2rg44ITGoh0jMgRgdse8c3hJ0EQfTJ6WdJe3BhM6SQddtupI-9bvObcngLfbxMjtrdB_x6ncus8-nx4_1S755e35dP2zymlfllJfMVsYKIaS1lDNTlboRsqEGLROQFg4cbAXGgMECoAKQII1uVkaApCVfZjdz7xj81x7jpHZ-H1x6qZgEIUvJZJFcbHbVwccYsFFj6AYdDgqo-iGrZrIqkVVHsoqlEJ9DMZndFsNf9T-pb4zKfHM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917959294</pqid></control><display><type>article</type><title>Shear strength prediction of reinforced concrete beams by baseline, ensemble, and hybrid machine learning models</title><source>Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Chou, Jui-Sheng ; Pham, Thi-Phuong-Trang ; Nguyen, Thi-Kha ; Pham, Anh-Duc ; Ngo, Ngoc-Tri</creator><creatorcontrib>Chou, Jui-Sheng ; Pham, Thi-Phuong-Trang ; Nguyen, Thi-Kha ; Pham, Anh-Duc ; Ngo, Ngoc-Tri</creatorcontrib><description>The shear strength of reinforced concrete (RC) beams is critical in the design of structural members. Developing an effective mathematical method for accurately estimating shear strength of RC beams is beneficial for civil engineers. This work presents a hybrid artificial intelligent (AI) model for effectively predicting the shear strength of various types of RC beam. The hybrid AI model was developed by integrating an optimization algorithm [smart firefly algorithm (SFA)] and machine learning [least squares support vector regression (LSSVR)], in which the SFA was used to optimize the hyperparameters of LSSVR, improving its predictive accuracy. Three large datasets were used to train and test the hybrid AI model in predicting shear strength of RC beams. The predictive accuracy of the hybrid AI model was compared comprehensively with those of single AI models, ensemble AI models, and empirical methods. The comparison results show that the hybrid AI model outperformed the others in predicting the shear strength of a wide range of RC beam types. In particular, with the test data of RC beams without stirrups, the hybrid AI model yielded a mean absolute percentage error (MAPE) of 21.703%. In predicting shear strength of RC beams with stirrups, the hybrid AI model yielded an MAPE of 12.941%. For RC beams with FRP reinforcement, the hybrid AI model yielded an MAPE 18.951%. Therefore, this hybrid AI model can be a better alternative method to help civil engineers in designing RC beams.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-019-04103-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Algorithms ; Artificial Intelligence ; Building codes ; Civil engineering ; Civil engineers ; Clustering ; Computational Intelligence ; Concrete ; Control ; Data mining ; Engineering ; Gene expression ; Heuristic methods ; Machine learning ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Optimization ; Performance evaluation ; Reinforced concrete ; Research methodology ; Robotics ; Shear strength ; Stirrups ; Structural members ; Support vector machines</subject><ispartof>Soft computing (Berlin, Germany), 2020-03, Vol.24 (5), p.3393-3411</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-52d8bd7779dd032b85af79f0bed2715af3131d81bb1be411811919baf6b719053</citedby><cites>FETCH-LOGICAL-c385t-52d8bd7779dd032b85af79f0bed2715af3131d81bb1be411811919baf6b719053</cites><orcidid>0000-0002-7102-4566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-019-04103-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917959294?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Chou, Jui-Sheng</creatorcontrib><creatorcontrib>Pham, Thi-Phuong-Trang</creatorcontrib><creatorcontrib>Nguyen, Thi-Kha</creatorcontrib><creatorcontrib>Pham, Anh-Duc</creatorcontrib><creatorcontrib>Ngo, Ngoc-Tri</creatorcontrib><title>Shear strength prediction of reinforced concrete beams by baseline, ensemble, and hybrid machine learning models</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>The shear strength of reinforced concrete (RC) beams is critical in the design of structural members. Developing an effective mathematical method for accurately estimating shear strength of RC beams is beneficial for civil engineers. This work presents a hybrid artificial intelligent (AI) model for effectively predicting the shear strength of various types of RC beam. The hybrid AI model was developed by integrating an optimization algorithm [smart firefly algorithm (SFA)] and machine learning [least squares support vector regression (LSSVR)], in which the SFA was used to optimize the hyperparameters of LSSVR, improving its predictive accuracy. Three large datasets were used to train and test the hybrid AI model in predicting shear strength of RC beams. The predictive accuracy of the hybrid AI model was compared comprehensively with those of single AI models, ensemble AI models, and empirical methods. The comparison results show that the hybrid AI model outperformed the others in predicting the shear strength of a wide range of RC beam types. In particular, with the test data of RC beams without stirrups, the hybrid AI model yielded a mean absolute percentage error (MAPE) of 21.703%. In predicting shear strength of RC beams with stirrups, the hybrid AI model yielded an MAPE of 12.941%. For RC beams with FRP reinforcement, the hybrid AI model yielded an MAPE 18.951%. Therefore, this hybrid AI model can be a better alternative method to help civil engineers in designing RC beams.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Building codes</subject><subject>Civil engineering</subject><subject>Civil engineers</subject><subject>Clustering</subject><subject>Computational Intelligence</subject><subject>Concrete</subject><subject>Control</subject><subject>Data mining</subject><subject>Engineering</subject><subject>Gene expression</subject><subject>Heuristic methods</subject><subject>Machine learning</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Reinforced concrete</subject><subject>Research methodology</subject><subject>Robotics</subject><subject>Shear strength</subject><subject>Stirrups</subject><subject>Structural members</subject><subject>Support vector machines</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LxDAQxYsouK5-AU8Br1YzSbtpjrL4DxY8qOeQNNNtlzapSfew3964Fbx5mjfMe2_gl2XXQO-AUnEfKS0pzSnInBZAec5OsgUUnOeiEPL0qFkuVgU_zy5i3FHKQJR8kY3vLepA4hTQbaeWjAFtV0-dd8Q3JGDnGh9qtKT2rg44ITGoh0jMgRgdse8c3hJ0EQfTJ6WdJe3BhM6SQddtupI-9bvObcngLfbxMjtrdB_x6ncus8-nx4_1S755e35dP2zymlfllJfMVsYKIaS1lDNTlboRsqEGLROQFg4cbAXGgMECoAKQII1uVkaApCVfZjdz7xj81x7jpHZ-H1x6qZgEIUvJZJFcbHbVwccYsFFj6AYdDgqo-iGrZrIqkVVHsoqlEJ9DMZndFsNf9T-pb4zKfHM</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Chou, Jui-Sheng</creator><creator>Pham, Thi-Phuong-Trang</creator><creator>Nguyen, Thi-Kha</creator><creator>Pham, Anh-Duc</creator><creator>Ngo, Ngoc-Tri</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-7102-4566</orcidid></search><sort><creationdate>20200301</creationdate><title>Shear strength prediction of reinforced concrete beams by baseline, ensemble, and hybrid machine learning models</title><author>Chou, Jui-Sheng ; Pham, Thi-Phuong-Trang ; Nguyen, Thi-Kha ; Pham, Anh-Duc ; Ngo, Ngoc-Tri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-52d8bd7779dd032b85af79f0bed2715af3131d81bb1be411811919baf6b719053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Building codes</topic><topic>Civil engineering</topic><topic>Civil engineers</topic><topic>Clustering</topic><topic>Computational Intelligence</topic><topic>Concrete</topic><topic>Control</topic><topic>Data mining</topic><topic>Engineering</topic><topic>Gene expression</topic><topic>Heuristic methods</topic><topic>Machine learning</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Reinforced concrete</topic><topic>Research methodology</topic><topic>Robotics</topic><topic>Shear strength</topic><topic>Stirrups</topic><topic>Structural members</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chou, Jui-Sheng</creatorcontrib><creatorcontrib>Pham, Thi-Phuong-Trang</creatorcontrib><creatorcontrib>Nguyen, Thi-Kha</creatorcontrib><creatorcontrib>Pham, Anh-Duc</creatorcontrib><creatorcontrib>Ngo, Ngoc-Tri</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chou, Jui-Sheng</au><au>Pham, Thi-Phuong-Trang</au><au>Nguyen, Thi-Kha</au><au>Pham, Anh-Duc</au><au>Ngo, Ngoc-Tri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shear strength prediction of reinforced concrete beams by baseline, ensemble, and hybrid machine learning models</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>24</volume><issue>5</issue><spage>3393</spage><epage>3411</epage><pages>3393-3411</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>The shear strength of reinforced concrete (RC) beams is critical in the design of structural members. Developing an effective mathematical method for accurately estimating shear strength of RC beams is beneficial for civil engineers. This work presents a hybrid artificial intelligent (AI) model for effectively predicting the shear strength of various types of RC beam. The hybrid AI model was developed by integrating an optimization algorithm [smart firefly algorithm (SFA)] and machine learning [least squares support vector regression (LSSVR)], in which the SFA was used to optimize the hyperparameters of LSSVR, improving its predictive accuracy. Three large datasets were used to train and test the hybrid AI model in predicting shear strength of RC beams. The predictive accuracy of the hybrid AI model was compared comprehensively with those of single AI models, ensemble AI models, and empirical methods. The comparison results show that the hybrid AI model outperformed the others in predicting the shear strength of a wide range of RC beam types. In particular, with the test data of RC beams without stirrups, the hybrid AI model yielded a mean absolute percentage error (MAPE) of 21.703%. In predicting shear strength of RC beams with stirrups, the hybrid AI model yielded an MAPE of 12.941%. For RC beams with FRP reinforcement, the hybrid AI model yielded an MAPE 18.951%. Therefore, this hybrid AI model can be a better alternative method to help civil engineers in designing RC beams.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-019-04103-2</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-7102-4566</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2020-03, Vol.24 (5), p.3393-3411
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2917959294
source Springer Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Accuracy
Algorithms
Artificial Intelligence
Building codes
Civil engineering
Civil engineers
Clustering
Computational Intelligence
Concrete
Control
Data mining
Engineering
Gene expression
Heuristic methods
Machine learning
Mathematical Logic and Foundations
Mechatronics
Methodologies and Application
Optimization
Performance evaluation
Reinforced concrete
Research methodology
Robotics
Shear strength
Stirrups
Structural members
Support vector machines
title Shear strength prediction of reinforced concrete beams by baseline, ensemble, and hybrid machine learning models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A17%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shear%20strength%20prediction%20of%20reinforced%20concrete%20beams%20by%20baseline,%20ensemble,%20and%20hybrid%20machine%20learning%20models&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Chou,%20Jui-Sheng&rft.date=2020-03-01&rft.volume=24&rft.issue=5&rft.spage=3393&rft.epage=3411&rft.pages=3393-3411&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-019-04103-2&rft_dat=%3Cproquest_cross%3E2917959294%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917959294&rft_id=info:pmid/&rfr_iscdi=true