Shear strength prediction of reinforced concrete beams by baseline, ensemble, and hybrid machine learning models
The shear strength of reinforced concrete (RC) beams is critical in the design of structural members. Developing an effective mathematical method for accurately estimating shear strength of RC beams is beneficial for civil engineers. This work presents a hybrid artificial intelligent (AI) model for...
Gespeichert in:
Veröffentlicht in: | Soft computing (Berlin, Germany) Germany), 2020-03, Vol.24 (5), p.3393-3411 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3411 |
---|---|
container_issue | 5 |
container_start_page | 3393 |
container_title | Soft computing (Berlin, Germany) |
container_volume | 24 |
creator | Chou, Jui-Sheng Pham, Thi-Phuong-Trang Nguyen, Thi-Kha Pham, Anh-Duc Ngo, Ngoc-Tri |
description | The shear strength of reinforced concrete (RC) beams is critical in the design of structural members. Developing an effective mathematical method for accurately estimating shear strength of RC beams is beneficial for civil engineers. This work presents a hybrid artificial intelligent (AI) model for effectively predicting the shear strength of various types of RC beam. The hybrid AI model was developed by integrating an optimization algorithm [smart firefly algorithm (SFA)] and machine learning [least squares support vector regression (LSSVR)], in which the SFA was used to optimize the hyperparameters of LSSVR, improving its predictive accuracy. Three large datasets were used to train and test the hybrid AI model in predicting shear strength of RC beams. The predictive accuracy of the hybrid AI model was compared comprehensively with those of single AI models, ensemble AI models, and empirical methods. The comparison results show that the hybrid AI model outperformed the others in predicting the shear strength of a wide range of RC beam types. In particular, with the test data of RC beams without stirrups, the hybrid AI model yielded a mean absolute percentage error (MAPE) of 21.703%. In predicting shear strength of RC beams with stirrups, the hybrid AI model yielded an MAPE of 12.941%. For RC beams with FRP reinforcement, the hybrid AI model yielded an MAPE 18.951%. Therefore, this hybrid AI model can be a better alternative method to help civil engineers in designing RC beams. |
doi_str_mv | 10.1007/s00500-019-04103-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917959294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917959294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-52d8bd7779dd032b85af79f0bed2715af3131d81bb1be411811919baf6b719053</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYsouK5-AU8Br1YzSbtpjrL4DxY8qOeQNNNtlzapSfew3964Fbx5mjfMe2_gl2XXQO-AUnEfKS0pzSnInBZAec5OsgUUnOeiEPL0qFkuVgU_zy5i3FHKQJR8kY3vLepA4hTQbaeWjAFtV0-dd8Q3JGDnGh9qtKT2rg44ITGoh0jMgRgdse8c3hJ0EQfTJ6WdJe3BhM6SQddtupI-9bvObcngLfbxMjtrdB_x6ncus8-nx4_1S755e35dP2zymlfllJfMVsYKIaS1lDNTlboRsqEGLROQFg4cbAXGgMECoAKQII1uVkaApCVfZjdz7xj81x7jpHZ-H1x6qZgEIUvJZJFcbHbVwccYsFFj6AYdDgqo-iGrZrIqkVVHsoqlEJ9DMZndFsNf9T-pb4zKfHM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917959294</pqid></control><display><type>article</type><title>Shear strength prediction of reinforced concrete beams by baseline, ensemble, and hybrid machine learning models</title><source>Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Chou, Jui-Sheng ; Pham, Thi-Phuong-Trang ; Nguyen, Thi-Kha ; Pham, Anh-Duc ; Ngo, Ngoc-Tri</creator><creatorcontrib>Chou, Jui-Sheng ; Pham, Thi-Phuong-Trang ; Nguyen, Thi-Kha ; Pham, Anh-Duc ; Ngo, Ngoc-Tri</creatorcontrib><description>The shear strength of reinforced concrete (RC) beams is critical in the design of structural members. Developing an effective mathematical method for accurately estimating shear strength of RC beams is beneficial for civil engineers. This work presents a hybrid artificial intelligent (AI) model for effectively predicting the shear strength of various types of RC beam. The hybrid AI model was developed by integrating an optimization algorithm [smart firefly algorithm (SFA)] and machine learning [least squares support vector regression (LSSVR)], in which the SFA was used to optimize the hyperparameters of LSSVR, improving its predictive accuracy. Three large datasets were used to train and test the hybrid AI model in predicting shear strength of RC beams. The predictive accuracy of the hybrid AI model was compared comprehensively with those of single AI models, ensemble AI models, and empirical methods. The comparison results show that the hybrid AI model outperformed the others in predicting the shear strength of a wide range of RC beam types. In particular, with the test data of RC beams without stirrups, the hybrid AI model yielded a mean absolute percentage error (MAPE) of 21.703%. In predicting shear strength of RC beams with stirrups, the hybrid AI model yielded an MAPE of 12.941%. For RC beams with FRP reinforcement, the hybrid AI model yielded an MAPE 18.951%. Therefore, this hybrid AI model can be a better alternative method to help civil engineers in designing RC beams.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-019-04103-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Algorithms ; Artificial Intelligence ; Building codes ; Civil engineering ; Civil engineers ; Clustering ; Computational Intelligence ; Concrete ; Control ; Data mining ; Engineering ; Gene expression ; Heuristic methods ; Machine learning ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Optimization ; Performance evaluation ; Reinforced concrete ; Research methodology ; Robotics ; Shear strength ; Stirrups ; Structural members ; Support vector machines</subject><ispartof>Soft computing (Berlin, Germany), 2020-03, Vol.24 (5), p.3393-3411</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-52d8bd7779dd032b85af79f0bed2715af3131d81bb1be411811919baf6b719053</citedby><cites>FETCH-LOGICAL-c385t-52d8bd7779dd032b85af79f0bed2715af3131d81bb1be411811919baf6b719053</cites><orcidid>0000-0002-7102-4566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-019-04103-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917959294?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Chou, Jui-Sheng</creatorcontrib><creatorcontrib>Pham, Thi-Phuong-Trang</creatorcontrib><creatorcontrib>Nguyen, Thi-Kha</creatorcontrib><creatorcontrib>Pham, Anh-Duc</creatorcontrib><creatorcontrib>Ngo, Ngoc-Tri</creatorcontrib><title>Shear strength prediction of reinforced concrete beams by baseline, ensemble, and hybrid machine learning models</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>The shear strength of reinforced concrete (RC) beams is critical in the design of structural members. Developing an effective mathematical method for accurately estimating shear strength of RC beams is beneficial for civil engineers. This work presents a hybrid artificial intelligent (AI) model for effectively predicting the shear strength of various types of RC beam. The hybrid AI model was developed by integrating an optimization algorithm [smart firefly algorithm (SFA)] and machine learning [least squares support vector regression (LSSVR)], in which the SFA was used to optimize the hyperparameters of LSSVR, improving its predictive accuracy. Three large datasets were used to train and test the hybrid AI model in predicting shear strength of RC beams. The predictive accuracy of the hybrid AI model was compared comprehensively with those of single AI models, ensemble AI models, and empirical methods. The comparison results show that the hybrid AI model outperformed the others in predicting the shear strength of a wide range of RC beam types. In particular, with the test data of RC beams without stirrups, the hybrid AI model yielded a mean absolute percentage error (MAPE) of 21.703%. In predicting shear strength of RC beams with stirrups, the hybrid AI model yielded an MAPE of 12.941%. For RC beams with FRP reinforcement, the hybrid AI model yielded an MAPE 18.951%. Therefore, this hybrid AI model can be a better alternative method to help civil engineers in designing RC beams.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Building codes</subject><subject>Civil engineering</subject><subject>Civil engineers</subject><subject>Clustering</subject><subject>Computational Intelligence</subject><subject>Concrete</subject><subject>Control</subject><subject>Data mining</subject><subject>Engineering</subject><subject>Gene expression</subject><subject>Heuristic methods</subject><subject>Machine learning</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Reinforced concrete</subject><subject>Research methodology</subject><subject>Robotics</subject><subject>Shear strength</subject><subject>Stirrups</subject><subject>Structural members</subject><subject>Support vector machines</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LxDAQxYsouK5-AU8Br1YzSbtpjrL4DxY8qOeQNNNtlzapSfew3964Fbx5mjfMe2_gl2XXQO-AUnEfKS0pzSnInBZAec5OsgUUnOeiEPL0qFkuVgU_zy5i3FHKQJR8kY3vLepA4hTQbaeWjAFtV0-dd8Q3JGDnGh9qtKT2rg44ITGoh0jMgRgdse8c3hJ0EQfTJ6WdJe3BhM6SQddtupI-9bvObcngLfbxMjtrdB_x6ncus8-nx4_1S755e35dP2zymlfllJfMVsYKIaS1lDNTlboRsqEGLROQFg4cbAXGgMECoAKQII1uVkaApCVfZjdz7xj81x7jpHZ-H1x6qZgEIUvJZJFcbHbVwccYsFFj6AYdDgqo-iGrZrIqkVVHsoqlEJ9DMZndFsNf9T-pb4zKfHM</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Chou, Jui-Sheng</creator><creator>Pham, Thi-Phuong-Trang</creator><creator>Nguyen, Thi-Kha</creator><creator>Pham, Anh-Duc</creator><creator>Ngo, Ngoc-Tri</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-7102-4566</orcidid></search><sort><creationdate>20200301</creationdate><title>Shear strength prediction of reinforced concrete beams by baseline, ensemble, and hybrid machine learning models</title><author>Chou, Jui-Sheng ; Pham, Thi-Phuong-Trang ; Nguyen, Thi-Kha ; Pham, Anh-Duc ; Ngo, Ngoc-Tri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-52d8bd7779dd032b85af79f0bed2715af3131d81bb1be411811919baf6b719053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Building codes</topic><topic>Civil engineering</topic><topic>Civil engineers</topic><topic>Clustering</topic><topic>Computational Intelligence</topic><topic>Concrete</topic><topic>Control</topic><topic>Data mining</topic><topic>Engineering</topic><topic>Gene expression</topic><topic>Heuristic methods</topic><topic>Machine learning</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Reinforced concrete</topic><topic>Research methodology</topic><topic>Robotics</topic><topic>Shear strength</topic><topic>Stirrups</topic><topic>Structural members</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chou, Jui-Sheng</creatorcontrib><creatorcontrib>Pham, Thi-Phuong-Trang</creatorcontrib><creatorcontrib>Nguyen, Thi-Kha</creatorcontrib><creatorcontrib>Pham, Anh-Duc</creatorcontrib><creatorcontrib>Ngo, Ngoc-Tri</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chou, Jui-Sheng</au><au>Pham, Thi-Phuong-Trang</au><au>Nguyen, Thi-Kha</au><au>Pham, Anh-Duc</au><au>Ngo, Ngoc-Tri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shear strength prediction of reinforced concrete beams by baseline, ensemble, and hybrid machine learning models</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>24</volume><issue>5</issue><spage>3393</spage><epage>3411</epage><pages>3393-3411</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>The shear strength of reinforced concrete (RC) beams is critical in the design of structural members. Developing an effective mathematical method for accurately estimating shear strength of RC beams is beneficial for civil engineers. This work presents a hybrid artificial intelligent (AI) model for effectively predicting the shear strength of various types of RC beam. The hybrid AI model was developed by integrating an optimization algorithm [smart firefly algorithm (SFA)] and machine learning [least squares support vector regression (LSSVR)], in which the SFA was used to optimize the hyperparameters of LSSVR, improving its predictive accuracy. Three large datasets were used to train and test the hybrid AI model in predicting shear strength of RC beams. The predictive accuracy of the hybrid AI model was compared comprehensively with those of single AI models, ensemble AI models, and empirical methods. The comparison results show that the hybrid AI model outperformed the others in predicting the shear strength of a wide range of RC beam types. In particular, with the test data of RC beams without stirrups, the hybrid AI model yielded a mean absolute percentage error (MAPE) of 21.703%. In predicting shear strength of RC beams with stirrups, the hybrid AI model yielded an MAPE of 12.941%. For RC beams with FRP reinforcement, the hybrid AI model yielded an MAPE 18.951%. Therefore, this hybrid AI model can be a better alternative method to help civil engineers in designing RC beams.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-019-04103-2</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-7102-4566</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-7643 |
ispartof | Soft computing (Berlin, Germany), 2020-03, Vol.24 (5), p.3393-3411 |
issn | 1432-7643 1433-7479 |
language | eng |
recordid | cdi_proquest_journals_2917959294 |
source | Springer Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Accuracy Algorithms Artificial Intelligence Building codes Civil engineering Civil engineers Clustering Computational Intelligence Concrete Control Data mining Engineering Gene expression Heuristic methods Machine learning Mathematical Logic and Foundations Mechatronics Methodologies and Application Optimization Performance evaluation Reinforced concrete Research methodology Robotics Shear strength Stirrups Structural members Support vector machines |
title | Shear strength prediction of reinforced concrete beams by baseline, ensemble, and hybrid machine learning models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A17%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shear%20strength%20prediction%20of%20reinforced%20concrete%20beams%20by%20baseline,%20ensemble,%20and%20hybrid%20machine%20learning%20models&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Chou,%20Jui-Sheng&rft.date=2020-03-01&rft.volume=24&rft.issue=5&rft.spage=3393&rft.epage=3411&rft.pages=3393-3411&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-019-04103-2&rft_dat=%3Cproquest_cross%3E2917959294%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917959294&rft_id=info:pmid/&rfr_iscdi=true |