A bibliometric analysis of text mining in medical research

Text mining has become an increasingly significant role in processing medical information. The research of text mining enhanced medical has attracted much attention in view from the substantial expansion of literature. This study aims to systematically review the existing academic research outputs o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2018-12, Vol.22 (23), p.7875-7892
Hauptverfasser: Hao, Tianyong, Chen, Xieling, Li, Guozheng, Yan, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7892
container_issue 23
container_start_page 7875
container_title Soft computing (Berlin, Germany)
container_volume 22
creator Hao, Tianyong
Chen, Xieling
Li, Guozheng
Yan, Jun
description Text mining has become an increasingly significant role in processing medical information. The research of text mining enhanced medical has attracted much attention in view from the substantial expansion of literature. This study aims to systematically review the existing academic research outputs of the field from Web of Science and PubMed by using techniques such as geographic visualization, collaboration degree, social network analysis, and topic modeling analysis. Specifically, publication statistical characteristics, geographical distribution, collaboration relations, and research topic are quantitatively analyzed. This study contributes to the text mining enhanced medical research field in a number of ways. First, it provides the latest research status for researchers who are interested in the field through literature analysis. Second, it helps scholars become more aware of the research subfields through hot topic identification. Third, it provides insights to researchers engaging in the field and motivates attention on the relevant research.
doi_str_mv 10.1007/s00500-018-3511-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917948434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917948434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-388e748eaf4671081763ba84df92f5d5a5bbf95e1b507bab3bb72f51e36eed353</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9FMkzStt2XxCxa86Dkk7WTN0o816YL7722t4MnTDMzzvgwPIdfAb4FzfZc4V5wzDgUTCoDJE7IAKQTTUpenP3vGdC7FOblIacd5BlqJBblfURdcE_oWhxgqajvbHFNItPd0wK-BtqEL3ZaGjrZYh8o2NGJCG6uPS3LmbZPw6ncuyfvjw9v6mW1en17Wqw2rZKYGJooCtSzQeplr4AXoXDhbyNqXmVe1sso5XyoEp7h21gnn9HgAFDliLZRYkpu5dx_7zwOmwez6Qxz_TCYrQZeykEKOFMxUFfuUInqzj6G18WiAm0mRmRWZUZGZFJkpk82ZNLLdFuNf8_-hb58NaDM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917948434</pqid></control><display><type>article</type><title>A bibliometric analysis of text mining in medical research</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Hao, Tianyong ; Chen, Xieling ; Li, Guozheng ; Yan, Jun</creator><creatorcontrib>Hao, Tianyong ; Chen, Xieling ; Li, Guozheng ; Yan, Jun</creatorcontrib><description>Text mining has become an increasingly significant role in processing medical information. The research of text mining enhanced medical has attracted much attention in view from the substantial expansion of literature. This study aims to systematically review the existing academic research outputs of the field from Web of Science and PubMed by using techniques such as geographic visualization, collaboration degree, social network analysis, and topic modeling analysis. Specifically, publication statistical characteristics, geographical distribution, collaboration relations, and research topic are quantitatively analyzed. This study contributes to the text mining enhanced medical research field in a number of ways. First, it provides the latest research status for researchers who are interested in the field through literature analysis. Second, it helps scholars become more aware of the research subfields through hot topic identification. Third, it provides insights to researchers engaging in the field and motivates attention on the relevant research.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-018-3511-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Bibliometrics ; Citation indexes ; Collaboration ; Computational Intelligence ; Control ; Cooperation ; Data mining ; Discriminant analysis ; Engineering ; Focus ; Geographical distribution ; Interdisciplinary aspects ; Keywords ; Library and information science ; Mathematical Logic and Foundations ; Mechatronics ; Medical records ; Medical research ; Natural language processing ; Network analysis ; Optimization techniques ; Robotics ; Science ; Social networks</subject><ispartof>Soft computing (Berlin, Germany), 2018-12, Vol.22 (23), p.7875-7892</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-388e748eaf4671081763ba84df92f5d5a5bbf95e1b507bab3bb72f51e36eed353</citedby><cites>FETCH-LOGICAL-c425t-388e748eaf4671081763ba84df92f5d5a5bbf95e1b507bab3bb72f51e36eed353</cites><orcidid>0000-0002-9792-3949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-018-3511-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917948434?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Hao, Tianyong</creatorcontrib><creatorcontrib>Chen, Xieling</creatorcontrib><creatorcontrib>Li, Guozheng</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><title>A bibliometric analysis of text mining in medical research</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>Text mining has become an increasingly significant role in processing medical information. The research of text mining enhanced medical has attracted much attention in view from the substantial expansion of literature. This study aims to systematically review the existing academic research outputs of the field from Web of Science and PubMed by using techniques such as geographic visualization, collaboration degree, social network analysis, and topic modeling analysis. Specifically, publication statistical characteristics, geographical distribution, collaboration relations, and research topic are quantitatively analyzed. This study contributes to the text mining enhanced medical research field in a number of ways. First, it provides the latest research status for researchers who are interested in the field through literature analysis. Second, it helps scholars become more aware of the research subfields through hot topic identification. Third, it provides insights to researchers engaging in the field and motivates attention on the relevant research.</description><subject>Artificial Intelligence</subject><subject>Bibliometrics</subject><subject>Citation indexes</subject><subject>Collaboration</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Cooperation</subject><subject>Data mining</subject><subject>Discriminant analysis</subject><subject>Engineering</subject><subject>Focus</subject><subject>Geographical distribution</subject><subject>Interdisciplinary aspects</subject><subject>Keywords</subject><subject>Library and information science</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Medical records</subject><subject>Medical research</subject><subject>Natural language processing</subject><subject>Network analysis</subject><subject>Optimization techniques</subject><subject>Robotics</subject><subject>Science</subject><subject>Social networks</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9FMkzStt2XxCxa86Dkk7WTN0o816YL7722t4MnTDMzzvgwPIdfAb4FzfZc4V5wzDgUTCoDJE7IAKQTTUpenP3vGdC7FOblIacd5BlqJBblfURdcE_oWhxgqajvbHFNItPd0wK-BtqEL3ZaGjrZYh8o2NGJCG6uPS3LmbZPw6ncuyfvjw9v6mW1en17Wqw2rZKYGJooCtSzQeplr4AXoXDhbyNqXmVe1sso5XyoEp7h21gnn9HgAFDliLZRYkpu5dx_7zwOmwez6Qxz_TCYrQZeykEKOFMxUFfuUInqzj6G18WiAm0mRmRWZUZGZFJkpk82ZNLLdFuNf8_-hb58NaDM</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Hao, Tianyong</creator><creator>Chen, Xieling</creator><creator>Li, Guozheng</creator><creator>Yan, Jun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-9792-3949</orcidid></search><sort><creationdate>20181201</creationdate><title>A bibliometric analysis of text mining in medical research</title><author>Hao, Tianyong ; Chen, Xieling ; Li, Guozheng ; Yan, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-388e748eaf4671081763ba84df92f5d5a5bbf95e1b507bab3bb72f51e36eed353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial Intelligence</topic><topic>Bibliometrics</topic><topic>Citation indexes</topic><topic>Collaboration</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Cooperation</topic><topic>Data mining</topic><topic>Discriminant analysis</topic><topic>Engineering</topic><topic>Focus</topic><topic>Geographical distribution</topic><topic>Interdisciplinary aspects</topic><topic>Keywords</topic><topic>Library and information science</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Medical records</topic><topic>Medical research</topic><topic>Natural language processing</topic><topic>Network analysis</topic><topic>Optimization techniques</topic><topic>Robotics</topic><topic>Science</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Tianyong</creatorcontrib><creatorcontrib>Chen, Xieling</creatorcontrib><creatorcontrib>Li, Guozheng</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Tianyong</au><au>Chen, Xieling</au><au>Li, Guozheng</au><au>Yan, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A bibliometric analysis of text mining in medical research</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>22</volume><issue>23</issue><spage>7875</spage><epage>7892</epage><pages>7875-7892</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>Text mining has become an increasingly significant role in processing medical information. The research of text mining enhanced medical has attracted much attention in view from the substantial expansion of literature. This study aims to systematically review the existing academic research outputs of the field from Web of Science and PubMed by using techniques such as geographic visualization, collaboration degree, social network analysis, and topic modeling analysis. Specifically, publication statistical characteristics, geographical distribution, collaboration relations, and research topic are quantitatively analyzed. This study contributes to the text mining enhanced medical research field in a number of ways. First, it provides the latest research status for researchers who are interested in the field through literature analysis. Second, it helps scholars become more aware of the research subfields through hot topic identification. Third, it provides insights to researchers engaging in the field and motivates attention on the relevant research.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-018-3511-4</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9792-3949</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2018-12, Vol.22 (23), p.7875-7892
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2917948434
source SpringerLink Journals; ProQuest Central
subjects Artificial Intelligence
Bibliometrics
Citation indexes
Collaboration
Computational Intelligence
Control
Cooperation
Data mining
Discriminant analysis
Engineering
Focus
Geographical distribution
Interdisciplinary aspects
Keywords
Library and information science
Mathematical Logic and Foundations
Mechatronics
Medical records
Medical research
Natural language processing
Network analysis
Optimization techniques
Robotics
Science
Social networks
title A bibliometric analysis of text mining in medical research
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A50%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20bibliometric%20analysis%20of%20text%20mining%20in%20medical%20research&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Hao,%20Tianyong&rft.date=2018-12-01&rft.volume=22&rft.issue=23&rft.spage=7875&rft.epage=7892&rft.pages=7875-7892&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-018-3511-4&rft_dat=%3Cproquest_cross%3E2917948434%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917948434&rft_id=info:pmid/&rfr_iscdi=true