Adaptive genetic MM-CPHD filter for multitarget tracking

Multitarget tracking is an important topic in visual surveillance system. Considering imperfections of the cardinalized probability hypothesis density (CPHD) filter and the target maneuvers, we propose an adaptive genetic multiple-model CPHD filter in this paper. First, we discuss the filtering proc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2017-08, Vol.21 (16), p.4755-4767
Hauptverfasser: Li, Bo, Zhao, Jianli, Pang, Fuwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4767
container_issue 16
container_start_page 4755
container_title Soft computing (Berlin, Germany)
container_volume 21
creator Li, Bo
Zhao, Jianli
Pang, Fuwen
description Multitarget tracking is an important topic in visual surveillance system. Considering imperfections of the cardinalized probability hypothesis density (CPHD) filter and the target maneuvers, we propose an adaptive genetic multiple-model CPHD filter in this paper. First, we discuss the filtering process and combined the standard CPHD filter with the multiple-model-based framework. Afterward, the sequential Monte Carlo implementation of the proposed filter for the nonlinear and non-Gaussian state estimates is presented in detail. To enhance the tracking performance as target start to maneuver, the adaptive genetic algorithm is used to improve the target state estimation accuracy at the time of state switching with the excellent particles. On the other hand, the undetected component of the measurement-updated weight of survival particle is compensated by the excess weight of newborn particle to correct the number estimates of targets. The simulation results are provided to illustrate the reliability and efficiency of the proposed filter.
doi_str_mv 10.1007/s00500-016-2087-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917948185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917948185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-548de40b6b084d75de7efb915c3081a5339ec2701ce7fab449145e64de6f707e3</originalsourceid><addsrcrecordid>eNp1kLFOwzAURS0EEqXwAWyRmA3PsR07Y1WgRWoFA8yW4zxHKW1SbBeJvyclSExM7w733CcdQq4Z3DIAdRcBJAAFVtActKJwQiZMcE6VUOXpT86pKgQ_JxcxbgBypiSfED2r7T61n5g12GFqXbZe0_nL8j7z7TZhyHwfst1hm9pkQ4MpS8G697ZrLsmZt9uIV793St4eH17nS7p6XjzNZyvqOCsSlULXKKAqKtCiVrJGhb4qmXQcNLOS8xJdroA5VN5WQpRMSCxEjYVXoJBPyc24uw_9xwFjMpv-ELrhpclLpkqhmZZDi40tF_oYA3qzD-3Ohi_DwBwFmVGQGQSZoyADA5OPTBy6XYPhb_l_6Bv4AGax</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917948185</pqid></control><display><type>article</type><title>Adaptive genetic MM-CPHD filter for multitarget tracking</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Li, Bo ; Zhao, Jianli ; Pang, Fuwen</creator><creatorcontrib>Li, Bo ; Zhao, Jianli ; Pang, Fuwen</creatorcontrib><description>Multitarget tracking is an important topic in visual surveillance system. Considering imperfections of the cardinalized probability hypothesis density (CPHD) filter and the target maneuvers, we propose an adaptive genetic multiple-model CPHD filter in this paper. First, we discuss the filtering process and combined the standard CPHD filter with the multiple-model-based framework. Afterward, the sequential Monte Carlo implementation of the proposed filter for the nonlinear and non-Gaussian state estimates is presented in detail. To enhance the tracking performance as target start to maneuver, the adaptive genetic algorithm is used to improve the target state estimation accuracy at the time of state switching with the excellent particles. On the other hand, the undetected component of the measurement-updated weight of survival particle is compensated by the excess weight of newborn particle to correct the number estimates of targets. The simulation results are provided to illustrate the reliability and efficiency of the proposed filter.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-016-2087-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptive algorithms ; Algorithms ; Artificial Intelligence ; Computational Intelligence ; Control ; Engineering ; Estimates ; False alarms ; Genetic algorithms ; Hypotheses ; Maneuvers ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Multiple target tracking ; Robotics ; State estimation ; Surveillance systems</subject><ispartof>Soft computing (Berlin, Germany), 2017-08, Vol.21 (16), p.4755-4767</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Springer-Verlag Berlin Heidelberg 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-548de40b6b084d75de7efb915c3081a5339ec2701ce7fab449145e64de6f707e3</citedby><cites>FETCH-LOGICAL-c316t-548de40b6b084d75de7efb915c3081a5339ec2701ce7fab449145e64de6f707e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-016-2087-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917948185?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,21393,27929,27930,33749,41493,42562,43810,51324,64390,64394,72474</link.rule.ids></links><search><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Zhao, Jianli</creatorcontrib><creatorcontrib>Pang, Fuwen</creatorcontrib><title>Adaptive genetic MM-CPHD filter for multitarget tracking</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>Multitarget tracking is an important topic in visual surveillance system. Considering imperfections of the cardinalized probability hypothesis density (CPHD) filter and the target maneuvers, we propose an adaptive genetic multiple-model CPHD filter in this paper. First, we discuss the filtering process and combined the standard CPHD filter with the multiple-model-based framework. Afterward, the sequential Monte Carlo implementation of the proposed filter for the nonlinear and non-Gaussian state estimates is presented in detail. To enhance the tracking performance as target start to maneuver, the adaptive genetic algorithm is used to improve the target state estimation accuracy at the time of state switching with the excellent particles. On the other hand, the undetected component of the measurement-updated weight of survival particle is compensated by the excess weight of newborn particle to correct the number estimates of targets. The simulation results are provided to illustrate the reliability and efficiency of the proposed filter.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Engineering</subject><subject>Estimates</subject><subject>False alarms</subject><subject>Genetic algorithms</subject><subject>Hypotheses</subject><subject>Maneuvers</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Multiple target tracking</subject><subject>Robotics</subject><subject>State estimation</subject><subject>Surveillance systems</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kLFOwzAURS0EEqXwAWyRmA3PsR07Y1WgRWoFA8yW4zxHKW1SbBeJvyclSExM7w733CcdQq4Z3DIAdRcBJAAFVtActKJwQiZMcE6VUOXpT86pKgQ_JxcxbgBypiSfED2r7T61n5g12GFqXbZe0_nL8j7z7TZhyHwfst1hm9pkQ4MpS8G697ZrLsmZt9uIV793St4eH17nS7p6XjzNZyvqOCsSlULXKKAqKtCiVrJGhb4qmXQcNLOS8xJdroA5VN5WQpRMSCxEjYVXoJBPyc24uw_9xwFjMpv-ELrhpclLpkqhmZZDi40tF_oYA3qzD-3Ohi_DwBwFmVGQGQSZoyADA5OPTBy6XYPhb_l_6Bv4AGax</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Li, Bo</creator><creator>Zhao, Jianli</creator><creator>Pang, Fuwen</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20170801</creationdate><title>Adaptive genetic MM-CPHD filter for multitarget tracking</title><author>Li, Bo ; Zhao, Jianli ; Pang, Fuwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-548de40b6b084d75de7efb915c3081a5339ec2701ce7fab449145e64de6f707e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Engineering</topic><topic>Estimates</topic><topic>False alarms</topic><topic>Genetic algorithms</topic><topic>Hypotheses</topic><topic>Maneuvers</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Multiple target tracking</topic><topic>Robotics</topic><topic>State estimation</topic><topic>Surveillance systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Zhao, Jianli</creatorcontrib><creatorcontrib>Pang, Fuwen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Bo</au><au>Zhao, Jianli</au><au>Pang, Fuwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive genetic MM-CPHD filter for multitarget tracking</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>21</volume><issue>16</issue><spage>4755</spage><epage>4767</epage><pages>4755-4767</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>Multitarget tracking is an important topic in visual surveillance system. Considering imperfections of the cardinalized probability hypothesis density (CPHD) filter and the target maneuvers, we propose an adaptive genetic multiple-model CPHD filter in this paper. First, we discuss the filtering process and combined the standard CPHD filter with the multiple-model-based framework. Afterward, the sequential Monte Carlo implementation of the proposed filter for the nonlinear and non-Gaussian state estimates is presented in detail. To enhance the tracking performance as target start to maneuver, the adaptive genetic algorithm is used to improve the target state estimation accuracy at the time of state switching with the excellent particles. On the other hand, the undetected component of the measurement-updated weight of survival particle is compensated by the excess weight of newborn particle to correct the number estimates of targets. The simulation results are provided to illustrate the reliability and efficiency of the proposed filter.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-016-2087-0</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2017-08, Vol.21 (16), p.4755-4767
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2917948185
source SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Adaptive algorithms
Algorithms
Artificial Intelligence
Computational Intelligence
Control
Engineering
Estimates
False alarms
Genetic algorithms
Hypotheses
Maneuvers
Mathematical Logic and Foundations
Mechatronics
Methodologies and Application
Multiple target tracking
Robotics
State estimation
Surveillance systems
title Adaptive genetic MM-CPHD filter for multitarget tracking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T08%3A46%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20genetic%20MM-CPHD%20filter%20for%20multitarget%20tracking&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Li,%20Bo&rft.date=2017-08-01&rft.volume=21&rft.issue=16&rft.spage=4755&rft.epage=4767&rft.pages=4755-4767&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-016-2087-0&rft_dat=%3Cproquest_cross%3E2917948185%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917948185&rft_id=info:pmid/&rfr_iscdi=true