A hybrid genetic algorithm and DEA approach for multi-criteria fixed cost allocation
This paper proposes a hybrid genetic algorithm and data envelopment analysis framework for solving the fixed cost allocation (FCA) problem. The proposed framework allows managers to incorporate different FCA sub-objectives for efficient and inefficient decision-making units (DMUs) and solves the FCA...
Gespeichert in:
Veröffentlicht in: | Soft computing (Berlin, Germany) Germany), 2018-11, Vol.22 (22), p.7315-7324 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7324 |
---|---|
container_issue | 22 |
container_start_page | 7315 |
container_title | Soft computing (Berlin, Germany) |
container_volume | 22 |
creator | Pendharkar, Parag C. |
description | This paper proposes a hybrid genetic algorithm and data envelopment analysis framework for solving the fixed cost allocation (FCA) problem. The proposed framework allows managers to incorporate different FCA sub-objectives for efficient and inefficient decision-making units (DMUs) and solves the FCA problem so that the total entropy of resource allocation for efficient DMUs is maximized, and correlation between resource allocation and efficiency scores of inefficient DMUs is minimized. The FCA sub-objectives and solutions are kept consistent with the overall management objective of rewarding efficient DMUs by allocating to them fewer fixed cost resources. We illustrate the application of our approach using an example from the literature. The results of our study indicate that the solution values obtained in our study are superior to those obtained in other studies under various criteria. Additionally, the relative gap between the solution obtained using our procedure, and the upper bound on the optimal value is approximately 1%, which indicates that our solution is very close to the optimal solution. |
doi_str_mv | 10.1007/s00500-017-2605-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917947444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917947444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-e55b99e0c38695f3e8512329512fbc4287e8fac036aa1ea8512ab8a2be6546c13</originalsourceid><addsrcrecordid>eNp1kEtLQzEQhYMoWB8_wF3AdTTvx7LU-oCCm7oOuWlum3J7U5NbsP_e1Cu4cjMzMOc7MxwA7gh-IBirx4KxwBhhohCVWCB9BiaEM4YUV-b8Z6ZISc4uwVUpW4wpUYJNwHIKN8cmxxVchz4M0UPXrVOOw2YHXb-CT_MpdPt9Ts5vYJsy3B26ISJfFSFHB9v4FVbQpzJUsEveDTH1N-CidV0Jt7_9Gnw8z5ezV7R4f3mbTRfIM8kHFIRojAnYMy2NaFnQglBGTa1t4znVKujWecykcyS409Y12tEmSMGlJ-wa3I--9b_PQyiD3aZD7utJSw1RhivOeVWRUeVzKiWH1u5z3Ll8tATbU3h2DM_W8OwpPKsrQ0emVG2_DvnP-X_oGycJcRE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917947444</pqid></control><display><type>article</type><title>A hybrid genetic algorithm and DEA approach for multi-criteria fixed cost allocation</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Pendharkar, Parag C.</creator><creatorcontrib>Pendharkar, Parag C.</creatorcontrib><description>This paper proposes a hybrid genetic algorithm and data envelopment analysis framework for solving the fixed cost allocation (FCA) problem. The proposed framework allows managers to incorporate different FCA sub-objectives for efficient and inefficient decision-making units (DMUs) and solves the FCA problem so that the total entropy of resource allocation for efficient DMUs is maximized, and correlation between resource allocation and efficiency scores of inefficient DMUs is minimized. The FCA sub-objectives and solutions are kept consistent with the overall management objective of rewarding efficient DMUs by allocating to them fewer fixed cost resources. We illustrate the application of our approach using an example from the literature. The results of our study indicate that the solution values obtained in our study are superior to those obtained in other studies under various criteria. Additionally, the relative gap between the solution obtained using our procedure, and the upper bound on the optimal value is approximately 1%, which indicates that our solution is very close to the optimal solution.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-017-2605-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Computational Intelligence ; Control ; Cost analysis ; Costs ; Data envelopment analysis ; Decision making ; Efficiency ; Engineering ; Focus ; Genetic algorithms ; Mathematical Logic and Foundations ; Mechatronics ; Multiple criterion ; Overhead costs ; Resource allocation ; Robotics ; Software ; Upper bounds</subject><ispartof>Soft computing (Berlin, Germany), 2018-11, Vol.22 (22), p.7315-7324</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Springer-Verlag Berlin Heidelberg 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-e55b99e0c38695f3e8512329512fbc4287e8fac036aa1ea8512ab8a2be6546c13</citedby><cites>FETCH-LOGICAL-c364t-e55b99e0c38695f3e8512329512fbc4287e8fac036aa1ea8512ab8a2be6546c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-017-2605-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917947444?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51298,64362,64366,72216</link.rule.ids></links><search><creatorcontrib>Pendharkar, Parag C.</creatorcontrib><title>A hybrid genetic algorithm and DEA approach for multi-criteria fixed cost allocation</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>This paper proposes a hybrid genetic algorithm and data envelopment analysis framework for solving the fixed cost allocation (FCA) problem. The proposed framework allows managers to incorporate different FCA sub-objectives for efficient and inefficient decision-making units (DMUs) and solves the FCA problem so that the total entropy of resource allocation for efficient DMUs is maximized, and correlation between resource allocation and efficiency scores of inefficient DMUs is minimized. The FCA sub-objectives and solutions are kept consistent with the overall management objective of rewarding efficient DMUs by allocating to them fewer fixed cost resources. We illustrate the application of our approach using an example from the literature. The results of our study indicate that the solution values obtained in our study are superior to those obtained in other studies under various criteria. Additionally, the relative gap between the solution obtained using our procedure, and the upper bound on the optimal value is approximately 1%, which indicates that our solution is very close to the optimal solution.</description><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Cost analysis</subject><subject>Costs</subject><subject>Data envelopment analysis</subject><subject>Decision making</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Focus</subject><subject>Genetic algorithms</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Multiple criterion</subject><subject>Overhead costs</subject><subject>Resource allocation</subject><subject>Robotics</subject><subject>Software</subject><subject>Upper bounds</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLQzEQhYMoWB8_wF3AdTTvx7LU-oCCm7oOuWlum3J7U5NbsP_e1Cu4cjMzMOc7MxwA7gh-IBirx4KxwBhhohCVWCB9BiaEM4YUV-b8Z6ZISc4uwVUpW4wpUYJNwHIKN8cmxxVchz4M0UPXrVOOw2YHXb-CT_MpdPt9Ts5vYJsy3B26ISJfFSFHB9v4FVbQpzJUsEveDTH1N-CidV0Jt7_9Gnw8z5ezV7R4f3mbTRfIM8kHFIRojAnYMy2NaFnQglBGTa1t4znVKujWecykcyS409Y12tEmSMGlJ-wa3I--9b_PQyiD3aZD7utJSw1RhivOeVWRUeVzKiWH1u5z3Ll8tATbU3h2DM_W8OwpPKsrQ0emVG2_DvnP-X_oGycJcRE</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Pendharkar, Parag C.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20181101</creationdate><title>A hybrid genetic algorithm and DEA approach for multi-criteria fixed cost allocation</title><author>Pendharkar, Parag C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-e55b99e0c38695f3e8512329512fbc4287e8fac036aa1ea8512ab8a2be6546c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Cost analysis</topic><topic>Costs</topic><topic>Data envelopment analysis</topic><topic>Decision making</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Focus</topic><topic>Genetic algorithms</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Multiple criterion</topic><topic>Overhead costs</topic><topic>Resource allocation</topic><topic>Robotics</topic><topic>Software</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pendharkar, Parag C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pendharkar, Parag C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid genetic algorithm and DEA approach for multi-criteria fixed cost allocation</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>22</volume><issue>22</issue><spage>7315</spage><epage>7324</epage><pages>7315-7324</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>This paper proposes a hybrid genetic algorithm and data envelopment analysis framework for solving the fixed cost allocation (FCA) problem. The proposed framework allows managers to incorporate different FCA sub-objectives for efficient and inefficient decision-making units (DMUs) and solves the FCA problem so that the total entropy of resource allocation for efficient DMUs is maximized, and correlation between resource allocation and efficiency scores of inefficient DMUs is minimized. The FCA sub-objectives and solutions are kept consistent with the overall management objective of rewarding efficient DMUs by allocating to them fewer fixed cost resources. We illustrate the application of our approach using an example from the literature. The results of our study indicate that the solution values obtained in our study are superior to those obtained in other studies under various criteria. Additionally, the relative gap between the solution obtained using our procedure, and the upper bound on the optimal value is approximately 1%, which indicates that our solution is very close to the optimal solution.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-017-2605-8</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-7643 |
ispartof | Soft computing (Berlin, Germany), 2018-11, Vol.22 (22), p.7315-7324 |
issn | 1432-7643 1433-7479 |
language | eng |
recordid | cdi_proquest_journals_2917947444 |
source | Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Artificial Intelligence Computational Intelligence Control Cost analysis Costs Data envelopment analysis Decision making Efficiency Engineering Focus Genetic algorithms Mathematical Logic and Foundations Mechatronics Multiple criterion Overhead costs Resource allocation Robotics Software Upper bounds |
title | A hybrid genetic algorithm and DEA approach for multi-criteria fixed cost allocation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A19%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20genetic%20algorithm%20and%20DEA%20approach%20for%20multi-criteria%20fixed%20cost%20allocation&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Pendharkar,%20Parag%20C.&rft.date=2018-11-01&rft.volume=22&rft.issue=22&rft.spage=7315&rft.epage=7324&rft.pages=7315-7324&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-017-2605-8&rft_dat=%3Cproquest_cross%3E2917947444%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917947444&rft_id=info:pmid/&rfr_iscdi=true |