Polyurethanes in cardiovascular prosthetics
Polyurethane has become a popular material in biomedical industry because of its good mechanical properties as well as biocompatibility and hemocompatibility. However, the material degrades during a long-term functioning of polyurethane grafts. To increase biostability, novel polyurethanes with a si...
Gespeichert in:
Veröffentlicht in: | Polymer bulletin (Berlin, Germany) Germany), 2018-09, Vol.75 (9), p.4311-4325 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4325 |
---|---|
container_issue | 9 |
container_start_page | 4311 |
container_title | Polymer bulletin (Berlin, Germany) |
container_volume | 75 |
creator | Gostev, Alexander A. Karpenko, Andrei A. Laktionov, Pavel P. |
description | Polyurethane has become a popular material in biomedical industry because of its good mechanical properties as well as biocompatibility and hemocompatibility. However, the material degrades during a long-term functioning of polyurethane grafts. To increase biostability, novel polyurethanes with a siloxane segment, polycarbonate polyurethanes, and nanocomposite polyurethanes are offered. Along with novel polyurethanes, modern tissue engineering technologies are well applicable for manufacture of the polyurethane products with unique properties. Different polyurethanes and modern technologies for producing cardiovascular grafts of polyurethane are discussed. |
doi_str_mv | 10.1007/s00289-017-2266-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917947383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917947383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-b7e58bf06e69c0d1a8674d3de1e7afb5d0db8a870365cda26d08a1dab4e444a33</originalsourceid><addsrcrecordid>eNp1UEtLxDAQDqLguvoDvC14lOjk0SQ9yuILFvSg5zBNUrdLbdekld1_b5YKnjwNw3yv-Qi5ZHDDAPRtAuCmpMA05VwpujsiMyaFolzK8pjM8gEoGFGekrOUNpB3pdiMXL_27X6MYVhjF9Ki6RYOo2_6b0xubDEutrFPwzoMjUvn5KTGNoWL3zkn7w_3b8snunp5fF7eragThRhopUNhqhpUUKUDz9AoLb3wgQWNdVV48JVBo0GownnkyoNB5rGSQUqJQszJ1aSbvb_GkAa76cfYZUvLS6ZLqYU5oNiEcjlhiqG229h8YtxbBvbQiZ06sflVe-jE7jKHT5yUsd1HiH_K_5N-AHRFZSo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917947383</pqid></control><display><type>article</type><title>Polyurethanes in cardiovascular prosthetics</title><source>SpringerLink (Online service)</source><source>ProQuest Central</source><creator>Gostev, Alexander A. ; Karpenko, Andrei A. ; Laktionov, Pavel P.</creator><creatorcontrib>Gostev, Alexander A. ; Karpenko, Andrei A. ; Laktionov, Pavel P.</creatorcontrib><description>Polyurethane has become a popular material in biomedical industry because of its good mechanical properties as well as biocompatibility and hemocompatibility. However, the material degrades during a long-term functioning of polyurethane grafts. To increase biostability, novel polyurethanes with a siloxane segment, polycarbonate polyurethanes, and nanocomposite polyurethanes are offered. Along with novel polyurethanes, modern tissue engineering technologies are well applicable for manufacture of the polyurethane products with unique properties. Different polyurethanes and modern technologies for producing cardiovascular grafts of polyurethane are discussed.</description><identifier>ISSN: 0170-0839</identifier><identifier>EISSN: 1436-2449</identifier><identifier>DOI: 10.1007/s00289-017-2266-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Antioxidants ; Biocompatibility ; Biodegradation ; Calcification ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Complex Fluids and Microfluidics ; Heart ; Hyperplasia ; Mechanical properties ; Medical research ; Nanocomposites ; Organic Chemistry ; Oxidation ; Physical Chemistry ; Polyesters ; Polyethylene glycol ; Polyethylene terephthalate ; Polymer Sciences ; Polymers ; Polyurethane ; Polyurethane resins ; Prostheses ; Review ; Siloxanes ; Soft and Granular Matter ; Thrombosis ; Tissue engineering</subject><ispartof>Polymer bulletin (Berlin, Germany), 2018-09, Vol.75 (9), p.4311-4325</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-b7e58bf06e69c0d1a8674d3de1e7afb5d0db8a870365cda26d08a1dab4e444a33</citedby><cites>FETCH-LOGICAL-c353t-b7e58bf06e69c0d1a8674d3de1e7afb5d0db8a870365cda26d08a1dab4e444a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00289-017-2266-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917947383?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Gostev, Alexander A.</creatorcontrib><creatorcontrib>Karpenko, Andrei A.</creatorcontrib><creatorcontrib>Laktionov, Pavel P.</creatorcontrib><title>Polyurethanes in cardiovascular prosthetics</title><title>Polymer bulletin (Berlin, Germany)</title><addtitle>Polym. Bull</addtitle><description>Polyurethane has become a popular material in biomedical industry because of its good mechanical properties as well as biocompatibility and hemocompatibility. However, the material degrades during a long-term functioning of polyurethane grafts. To increase biostability, novel polyurethanes with a siloxane segment, polycarbonate polyurethanes, and nanocomposite polyurethanes are offered. Along with novel polyurethanes, modern tissue engineering technologies are well applicable for manufacture of the polyurethane products with unique properties. Different polyurethanes and modern technologies for producing cardiovascular grafts of polyurethane are discussed.</description><subject>Antioxidants</subject><subject>Biocompatibility</subject><subject>Biodegradation</subject><subject>Calcification</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Complex Fluids and Microfluidics</subject><subject>Heart</subject><subject>Hyperplasia</subject><subject>Mechanical properties</subject><subject>Medical research</subject><subject>Nanocomposites</subject><subject>Organic Chemistry</subject><subject>Oxidation</subject><subject>Physical Chemistry</subject><subject>Polyesters</subject><subject>Polyethylene glycol</subject><subject>Polyethylene terephthalate</subject><subject>Polymer Sciences</subject><subject>Polymers</subject><subject>Polyurethane</subject><subject>Polyurethane resins</subject><subject>Prostheses</subject><subject>Review</subject><subject>Siloxanes</subject><subject>Soft and Granular Matter</subject><subject>Thrombosis</subject><subject>Tissue engineering</subject><issn>0170-0839</issn><issn>1436-2449</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1UEtLxDAQDqLguvoDvC14lOjk0SQ9yuILFvSg5zBNUrdLbdekld1_b5YKnjwNw3yv-Qi5ZHDDAPRtAuCmpMA05VwpujsiMyaFolzK8pjM8gEoGFGekrOUNpB3pdiMXL_27X6MYVhjF9Ki6RYOo2_6b0xubDEutrFPwzoMjUvn5KTGNoWL3zkn7w_3b8snunp5fF7eragThRhopUNhqhpUUKUDz9AoLb3wgQWNdVV48JVBo0GownnkyoNB5rGSQUqJQszJ1aSbvb_GkAa76cfYZUvLS6ZLqYU5oNiEcjlhiqG229h8YtxbBvbQiZ06sflVe-jE7jKHT5yUsd1HiH_K_5N-AHRFZSo</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Gostev, Alexander A.</creator><creator>Karpenko, Andrei A.</creator><creator>Laktionov, Pavel P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20180901</creationdate><title>Polyurethanes in cardiovascular prosthetics</title><author>Gostev, Alexander A. ; Karpenko, Andrei A. ; Laktionov, Pavel P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-b7e58bf06e69c0d1a8674d3de1e7afb5d0db8a870365cda26d08a1dab4e444a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antioxidants</topic><topic>Biocompatibility</topic><topic>Biodegradation</topic><topic>Calcification</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Complex Fluids and Microfluidics</topic><topic>Heart</topic><topic>Hyperplasia</topic><topic>Mechanical properties</topic><topic>Medical research</topic><topic>Nanocomposites</topic><topic>Organic Chemistry</topic><topic>Oxidation</topic><topic>Physical Chemistry</topic><topic>Polyesters</topic><topic>Polyethylene glycol</topic><topic>Polyethylene terephthalate</topic><topic>Polymer Sciences</topic><topic>Polymers</topic><topic>Polyurethane</topic><topic>Polyurethane resins</topic><topic>Prostheses</topic><topic>Review</topic><topic>Siloxanes</topic><topic>Soft and Granular Matter</topic><topic>Thrombosis</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gostev, Alexander A.</creatorcontrib><creatorcontrib>Karpenko, Andrei A.</creatorcontrib><creatorcontrib>Laktionov, Pavel P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Polymer bulletin (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gostev, Alexander A.</au><au>Karpenko, Andrei A.</au><au>Laktionov, Pavel P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polyurethanes in cardiovascular prosthetics</atitle><jtitle>Polymer bulletin (Berlin, Germany)</jtitle><stitle>Polym. Bull</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>75</volume><issue>9</issue><spage>4311</spage><epage>4325</epage><pages>4311-4325</pages><issn>0170-0839</issn><eissn>1436-2449</eissn><abstract>Polyurethane has become a popular material in biomedical industry because of its good mechanical properties as well as biocompatibility and hemocompatibility. However, the material degrades during a long-term functioning of polyurethane grafts. To increase biostability, novel polyurethanes with a siloxane segment, polycarbonate polyurethanes, and nanocomposite polyurethanes are offered. Along with novel polyurethanes, modern tissue engineering technologies are well applicable for manufacture of the polyurethane products with unique properties. Different polyurethanes and modern technologies for producing cardiovascular grafts of polyurethane are discussed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00289-017-2266-x</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-0839 |
ispartof | Polymer bulletin (Berlin, Germany), 2018-09, Vol.75 (9), p.4311-4325 |
issn | 0170-0839 1436-2449 |
language | eng |
recordid | cdi_proquest_journals_2917947383 |
source | SpringerLink (Online service); ProQuest Central |
subjects | Antioxidants Biocompatibility Biodegradation Calcification Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Complex Fluids and Microfluidics Heart Hyperplasia Mechanical properties Medical research Nanocomposites Organic Chemistry Oxidation Physical Chemistry Polyesters Polyethylene glycol Polyethylene terephthalate Polymer Sciences Polymers Polyurethane Polyurethane resins Prostheses Review Siloxanes Soft and Granular Matter Thrombosis Tissue engineering |
title | Polyurethanes in cardiovascular prosthetics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A44%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polyurethanes%20in%20cardiovascular%20prosthetics&rft.jtitle=Polymer%20bulletin%20(Berlin,%20Germany)&rft.au=Gostev,%20Alexander%20A.&rft.date=2018-09-01&rft.volume=75&rft.issue=9&rft.spage=4311&rft.epage=4325&rft.pages=4311-4325&rft.issn=0170-0839&rft.eissn=1436-2449&rft_id=info:doi/10.1007/s00289-017-2266-x&rft_dat=%3Cproquest_cross%3E2917947383%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917947383&rft_id=info:pmid/&rfr_iscdi=true |