Polyurethanes in cardiovascular prosthetics

Polyurethane has become a popular material in biomedical industry because of its good mechanical properties as well as biocompatibility and hemocompatibility. However, the material degrades during a long-term functioning of polyurethane grafts. To increase biostability, novel polyurethanes with a si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer bulletin (Berlin, Germany) Germany), 2018-09, Vol.75 (9), p.4311-4325
Hauptverfasser: Gostev, Alexander A., Karpenko, Andrei A., Laktionov, Pavel P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4325
container_issue 9
container_start_page 4311
container_title Polymer bulletin (Berlin, Germany)
container_volume 75
creator Gostev, Alexander A.
Karpenko, Andrei A.
Laktionov, Pavel P.
description Polyurethane has become a popular material in biomedical industry because of its good mechanical properties as well as biocompatibility and hemocompatibility. However, the material degrades during a long-term functioning of polyurethane grafts. To increase biostability, novel polyurethanes with a siloxane segment, polycarbonate polyurethanes, and nanocomposite polyurethanes are offered. Along with novel polyurethanes, modern tissue engineering technologies are well applicable for manufacture of the polyurethane products with unique properties. Different polyurethanes and modern technologies for producing cardiovascular grafts of polyurethane are discussed.
doi_str_mv 10.1007/s00289-017-2266-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917947383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917947383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-b7e58bf06e69c0d1a8674d3de1e7afb5d0db8a870365cda26d08a1dab4e444a33</originalsourceid><addsrcrecordid>eNp1UEtLxDAQDqLguvoDvC14lOjk0SQ9yuILFvSg5zBNUrdLbdekld1_b5YKnjwNw3yv-Qi5ZHDDAPRtAuCmpMA05VwpujsiMyaFolzK8pjM8gEoGFGekrOUNpB3pdiMXL_27X6MYVhjF9Ki6RYOo2_6b0xubDEutrFPwzoMjUvn5KTGNoWL3zkn7w_3b8snunp5fF7eragThRhopUNhqhpUUKUDz9AoLb3wgQWNdVV48JVBo0GownnkyoNB5rGSQUqJQszJ1aSbvb_GkAa76cfYZUvLS6ZLqYU5oNiEcjlhiqG229h8YtxbBvbQiZ06sflVe-jE7jKHT5yUsd1HiH_K_5N-AHRFZSo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917947383</pqid></control><display><type>article</type><title>Polyurethanes in cardiovascular prosthetics</title><source>SpringerLink (Online service)</source><source>ProQuest Central</source><creator>Gostev, Alexander A. ; Karpenko, Andrei A. ; Laktionov, Pavel P.</creator><creatorcontrib>Gostev, Alexander A. ; Karpenko, Andrei A. ; Laktionov, Pavel P.</creatorcontrib><description>Polyurethane has become a popular material in biomedical industry because of its good mechanical properties as well as biocompatibility and hemocompatibility. However, the material degrades during a long-term functioning of polyurethane grafts. To increase biostability, novel polyurethanes with a siloxane segment, polycarbonate polyurethanes, and nanocomposite polyurethanes are offered. Along with novel polyurethanes, modern tissue engineering technologies are well applicable for manufacture of the polyurethane products with unique properties. Different polyurethanes and modern technologies for producing cardiovascular grafts of polyurethane are discussed.</description><identifier>ISSN: 0170-0839</identifier><identifier>EISSN: 1436-2449</identifier><identifier>DOI: 10.1007/s00289-017-2266-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Antioxidants ; Biocompatibility ; Biodegradation ; Calcification ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Complex Fluids and Microfluidics ; Heart ; Hyperplasia ; Mechanical properties ; Medical research ; Nanocomposites ; Organic Chemistry ; Oxidation ; Physical Chemistry ; Polyesters ; Polyethylene glycol ; Polyethylene terephthalate ; Polymer Sciences ; Polymers ; Polyurethane ; Polyurethane resins ; Prostheses ; Review ; Siloxanes ; Soft and Granular Matter ; Thrombosis ; Tissue engineering</subject><ispartof>Polymer bulletin (Berlin, Germany), 2018-09, Vol.75 (9), p.4311-4325</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-b7e58bf06e69c0d1a8674d3de1e7afb5d0db8a870365cda26d08a1dab4e444a33</citedby><cites>FETCH-LOGICAL-c353t-b7e58bf06e69c0d1a8674d3de1e7afb5d0db8a870365cda26d08a1dab4e444a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00289-017-2266-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917947383?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Gostev, Alexander A.</creatorcontrib><creatorcontrib>Karpenko, Andrei A.</creatorcontrib><creatorcontrib>Laktionov, Pavel P.</creatorcontrib><title>Polyurethanes in cardiovascular prosthetics</title><title>Polymer bulletin (Berlin, Germany)</title><addtitle>Polym. Bull</addtitle><description>Polyurethane has become a popular material in biomedical industry because of its good mechanical properties as well as biocompatibility and hemocompatibility. However, the material degrades during a long-term functioning of polyurethane grafts. To increase biostability, novel polyurethanes with a siloxane segment, polycarbonate polyurethanes, and nanocomposite polyurethanes are offered. Along with novel polyurethanes, modern tissue engineering technologies are well applicable for manufacture of the polyurethane products with unique properties. Different polyurethanes and modern technologies for producing cardiovascular grafts of polyurethane are discussed.</description><subject>Antioxidants</subject><subject>Biocompatibility</subject><subject>Biodegradation</subject><subject>Calcification</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Complex Fluids and Microfluidics</subject><subject>Heart</subject><subject>Hyperplasia</subject><subject>Mechanical properties</subject><subject>Medical research</subject><subject>Nanocomposites</subject><subject>Organic Chemistry</subject><subject>Oxidation</subject><subject>Physical Chemistry</subject><subject>Polyesters</subject><subject>Polyethylene glycol</subject><subject>Polyethylene terephthalate</subject><subject>Polymer Sciences</subject><subject>Polymers</subject><subject>Polyurethane</subject><subject>Polyurethane resins</subject><subject>Prostheses</subject><subject>Review</subject><subject>Siloxanes</subject><subject>Soft and Granular Matter</subject><subject>Thrombosis</subject><subject>Tissue engineering</subject><issn>0170-0839</issn><issn>1436-2449</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1UEtLxDAQDqLguvoDvC14lOjk0SQ9yuILFvSg5zBNUrdLbdekld1_b5YKnjwNw3yv-Qi5ZHDDAPRtAuCmpMA05VwpujsiMyaFolzK8pjM8gEoGFGekrOUNpB3pdiMXL_27X6MYVhjF9Ki6RYOo2_6b0xubDEutrFPwzoMjUvn5KTGNoWL3zkn7w_3b8snunp5fF7eragThRhopUNhqhpUUKUDz9AoLb3wgQWNdVV48JVBo0GownnkyoNB5rGSQUqJQszJ1aSbvb_GkAa76cfYZUvLS6ZLqYU5oNiEcjlhiqG229h8YtxbBvbQiZ06sflVe-jE7jKHT5yUsd1HiH_K_5N-AHRFZSo</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Gostev, Alexander A.</creator><creator>Karpenko, Andrei A.</creator><creator>Laktionov, Pavel P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20180901</creationdate><title>Polyurethanes in cardiovascular prosthetics</title><author>Gostev, Alexander A. ; Karpenko, Andrei A. ; Laktionov, Pavel P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-b7e58bf06e69c0d1a8674d3de1e7afb5d0db8a870365cda26d08a1dab4e444a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antioxidants</topic><topic>Biocompatibility</topic><topic>Biodegradation</topic><topic>Calcification</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Complex Fluids and Microfluidics</topic><topic>Heart</topic><topic>Hyperplasia</topic><topic>Mechanical properties</topic><topic>Medical research</topic><topic>Nanocomposites</topic><topic>Organic Chemistry</topic><topic>Oxidation</topic><topic>Physical Chemistry</topic><topic>Polyesters</topic><topic>Polyethylene glycol</topic><topic>Polyethylene terephthalate</topic><topic>Polymer Sciences</topic><topic>Polymers</topic><topic>Polyurethane</topic><topic>Polyurethane resins</topic><topic>Prostheses</topic><topic>Review</topic><topic>Siloxanes</topic><topic>Soft and Granular Matter</topic><topic>Thrombosis</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gostev, Alexander A.</creatorcontrib><creatorcontrib>Karpenko, Andrei A.</creatorcontrib><creatorcontrib>Laktionov, Pavel P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Polymer bulletin (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gostev, Alexander A.</au><au>Karpenko, Andrei A.</au><au>Laktionov, Pavel P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polyurethanes in cardiovascular prosthetics</atitle><jtitle>Polymer bulletin (Berlin, Germany)</jtitle><stitle>Polym. Bull</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>75</volume><issue>9</issue><spage>4311</spage><epage>4325</epage><pages>4311-4325</pages><issn>0170-0839</issn><eissn>1436-2449</eissn><abstract>Polyurethane has become a popular material in biomedical industry because of its good mechanical properties as well as biocompatibility and hemocompatibility. However, the material degrades during a long-term functioning of polyurethane grafts. To increase biostability, novel polyurethanes with a siloxane segment, polycarbonate polyurethanes, and nanocomposite polyurethanes are offered. Along with novel polyurethanes, modern tissue engineering technologies are well applicable for manufacture of the polyurethane products with unique properties. Different polyurethanes and modern technologies for producing cardiovascular grafts of polyurethane are discussed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00289-017-2266-x</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0170-0839
ispartof Polymer bulletin (Berlin, Germany), 2018-09, Vol.75 (9), p.4311-4325
issn 0170-0839
1436-2449
language eng
recordid cdi_proquest_journals_2917947383
source SpringerLink (Online service); ProQuest Central
subjects Antioxidants
Biocompatibility
Biodegradation
Calcification
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Complex Fluids and Microfluidics
Heart
Hyperplasia
Mechanical properties
Medical research
Nanocomposites
Organic Chemistry
Oxidation
Physical Chemistry
Polyesters
Polyethylene glycol
Polyethylene terephthalate
Polymer Sciences
Polymers
Polyurethane
Polyurethane resins
Prostheses
Review
Siloxanes
Soft and Granular Matter
Thrombosis
Tissue engineering
title Polyurethanes in cardiovascular prosthetics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A44%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polyurethanes%20in%20cardiovascular%20prosthetics&rft.jtitle=Polymer%20bulletin%20(Berlin,%20Germany)&rft.au=Gostev,%20Alexander%20A.&rft.date=2018-09-01&rft.volume=75&rft.issue=9&rft.spage=4311&rft.epage=4325&rft.pages=4311-4325&rft.issn=0170-0839&rft.eissn=1436-2449&rft_id=info:doi/10.1007/s00289-017-2266-x&rft_dat=%3Cproquest_cross%3E2917947383%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917947383&rft_id=info:pmid/&rfr_iscdi=true