Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms

In power systems, optimal power flow (OPF) is a complex and constrained optimization problem in which quite often multiple and conflicting objectives are required to be optimized. The traditional way of dealing with multi-objective OPF (MOOPF) is the weighted sum method which converts the multi-obje...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2020-02, Vol.24 (4), p.2999-3023
Hauptverfasser: Biswas, Partha P., Suganthan, P. N., Mallipeddi, R., Amaratunga, Gehan A. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3023
container_issue 4
container_start_page 2999
container_title Soft computing (Berlin, Germany)
container_volume 24
creator Biswas, Partha P.
Suganthan, P. N.
Mallipeddi, R.
Amaratunga, Gehan A. J.
description In power systems, optimal power flow (OPF) is a complex and constrained optimization problem in which quite often multiple and conflicting objectives are required to be optimized. The traditional way of dealing with multi-objective OPF (MOOPF) is the weighted sum method which converts the multi-objective OPF into a single-objective problem and provides a single solution from the set of Pareto solutions. This paper presents MOOPF study applying multi-objective evolutionary algorithm based on decomposition (MOEA/D) where a set of non-dominated solutions ( Pareto solutions) can be obtained in a single run of the algorithm. OPF is formulated with two or more objectives among fuel (generation) cost, emission, power loss and voltage deviation. The other important aspect in OPF problem is about satisfying power system constraints. As the search process adopted by evolutionary algorithms is unconstrained, for a constrained optimization problem like OPF, static penalty function approach has been extensively employed to discard infeasible solutions. This approach requires selection of a suitable penalty coefficient, largely done by trial-and-error, and an improper selection may often lead to violation of system constraints. In this paper, an effective constraint handling method, superiority of feasible solutions (SF), is used in conjunction with MOEA/D to handle network constraints in MOOPF study. The algorithm MOEA/D-SF is applied to standard IEEE 30-bus and IEEE 57-bus test systems. Simulation results are analyzed, especially for constraint violation and compared with recently reported results on OPF.
doi_str_mv 10.1007/s00500-019-04077-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917946773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917946773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-8cc8dba663463d4dfd55b7f2f0444e0cdacb89c0b1e9ff6911ed3f934d5b0e6c3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEqXwA6wssTaMYyeul6jiJRWxgbXl-NGmSuNgO63697i0EjtWM2Pde8dziuKWwD0B4A8RoALAQAQGBpxjclZMCKMUc8bF-W9fYl4zellcxbgGKAmv6KTYvI9darFv1landmuRH1K7UR0a_M4G5Dq_Q9F3Y2p9H9EY236JFNJ5SEG1fUIr1Zvu8JqsXvXt95gjHLLbk0eFPVLd0oc2rTbxurhwqov25lSnxdfz0-f8FS8-Xt7mjwusWUkSnmk9M42qa8pqaphxpqoa7koHjDEL2ijdzISGhljhXC0IsYY6QZmpGrC1ptPi7pg7BJ9_FJNc-zH0eaUsBeGC1ZzTrCqPKh18jME6OYR8e9hLAvKAVR6xyoxV_mKVJJvo0RSzuF_a8Bf9j-sHpzN-cQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917946773</pqid></control><display><type>article</type><title>Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Biswas, Partha P. ; Suganthan, P. N. ; Mallipeddi, R. ; Amaratunga, Gehan A. J.</creator><creatorcontrib>Biswas, Partha P. ; Suganthan, P. N. ; Mallipeddi, R. ; Amaratunga, Gehan A. J.</creatorcontrib><description>In power systems, optimal power flow (OPF) is a complex and constrained optimization problem in which quite often multiple and conflicting objectives are required to be optimized. The traditional way of dealing with multi-objective OPF (MOOPF) is the weighted sum method which converts the multi-objective OPF into a single-objective problem and provides a single solution from the set of Pareto solutions. This paper presents MOOPF study applying multi-objective evolutionary algorithm based on decomposition (MOEA/D) where a set of non-dominated solutions ( Pareto solutions) can be obtained in a single run of the algorithm. OPF is formulated with two or more objectives among fuel (generation) cost, emission, power loss and voltage deviation. The other important aspect in OPF problem is about satisfying power system constraints. As the search process adopted by evolutionary algorithms is unconstrained, for a constrained optimization problem like OPF, static penalty function approach has been extensively employed to discard infeasible solutions. This approach requires selection of a suitable penalty coefficient, largely done by trial-and-error, and an improper selection may often lead to violation of system constraints. In this paper, an effective constraint handling method, superiority of feasible solutions (SF), is used in conjunction with MOEA/D to handle network constraints in MOOPF study. The algorithm MOEA/D-SF is applied to standard IEEE 30-bus and IEEE 57-bus test systems. Simulation results are analyzed, especially for constraint violation and compared with recently reported results on OPF.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-019-04077-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Competition ; Computational Intelligence ; Constraints ; Control ; Decomposition ; Engineering ; Evolutionary algorithms ; Genetic algorithms ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Multiple objective analysis ; Objectives ; Optimization ; Optimization algorithms ; Penalty function ; Power flow ; Robotics ; Search process ; Test systems</subject><ispartof>Soft computing (Berlin, Germany), 2020-02, Vol.24 (4), p.2999-3023</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-8cc8dba663463d4dfd55b7f2f0444e0cdacb89c0b1e9ff6911ed3f934d5b0e6c3</citedby><cites>FETCH-LOGICAL-c421t-8cc8dba663463d4dfd55b7f2f0444e0cdacb89c0b1e9ff6911ed3f934d5b0e6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-019-04077-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917946773?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Biswas, Partha P.</creatorcontrib><creatorcontrib>Suganthan, P. N.</creatorcontrib><creatorcontrib>Mallipeddi, R.</creatorcontrib><creatorcontrib>Amaratunga, Gehan A. J.</creatorcontrib><title>Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>In power systems, optimal power flow (OPF) is a complex and constrained optimization problem in which quite often multiple and conflicting objectives are required to be optimized. The traditional way of dealing with multi-objective OPF (MOOPF) is the weighted sum method which converts the multi-objective OPF into a single-objective problem and provides a single solution from the set of Pareto solutions. This paper presents MOOPF study applying multi-objective evolutionary algorithm based on decomposition (MOEA/D) where a set of non-dominated solutions ( Pareto solutions) can be obtained in a single run of the algorithm. OPF is formulated with two or more objectives among fuel (generation) cost, emission, power loss and voltage deviation. The other important aspect in OPF problem is about satisfying power system constraints. As the search process adopted by evolutionary algorithms is unconstrained, for a constrained optimization problem like OPF, static penalty function approach has been extensively employed to discard infeasible solutions. This approach requires selection of a suitable penalty coefficient, largely done by trial-and-error, and an improper selection may often lead to violation of system constraints. In this paper, an effective constraint handling method, superiority of feasible solutions (SF), is used in conjunction with MOEA/D to handle network constraints in MOOPF study. The algorithm MOEA/D-SF is applied to standard IEEE 30-bus and IEEE 57-bus test systems. Simulation results are analyzed, especially for constraint violation and compared with recently reported results on OPF.</description><subject>Artificial Intelligence</subject><subject>Competition</subject><subject>Computational Intelligence</subject><subject>Constraints</subject><subject>Control</subject><subject>Decomposition</subject><subject>Engineering</subject><subject>Evolutionary algorithms</subject><subject>Genetic algorithms</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Multiple objective analysis</subject><subject>Objectives</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Penalty function</subject><subject>Power flow</subject><subject>Robotics</subject><subject>Search process</subject><subject>Test systems</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtOwzAQRSMEEqXwA6wssTaMYyeul6jiJRWxgbXl-NGmSuNgO63697i0EjtWM2Pde8dziuKWwD0B4A8RoALAQAQGBpxjclZMCKMUc8bF-W9fYl4zellcxbgGKAmv6KTYvI9darFv1landmuRH1K7UR0a_M4G5Dq_Q9F3Y2p9H9EY236JFNJ5SEG1fUIr1Zvu8JqsXvXt95gjHLLbk0eFPVLd0oc2rTbxurhwqov25lSnxdfz0-f8FS8-Xt7mjwusWUkSnmk9M42qa8pqaphxpqoa7koHjDEL2ijdzISGhljhXC0IsYY6QZmpGrC1ptPi7pg7BJ9_FJNc-zH0eaUsBeGC1ZzTrCqPKh18jME6OYR8e9hLAvKAVR6xyoxV_mKVJJvo0RSzuF_a8Bf9j-sHpzN-cQ</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Biswas, Partha P.</creator><creator>Suganthan, P. N.</creator><creator>Mallipeddi, R.</creator><creator>Amaratunga, Gehan A. J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20200201</creationdate><title>Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms</title><author>Biswas, Partha P. ; Suganthan, P. N. ; Mallipeddi, R. ; Amaratunga, Gehan A. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-8cc8dba663463d4dfd55b7f2f0444e0cdacb89c0b1e9ff6911ed3f934d5b0e6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Competition</topic><topic>Computational Intelligence</topic><topic>Constraints</topic><topic>Control</topic><topic>Decomposition</topic><topic>Engineering</topic><topic>Evolutionary algorithms</topic><topic>Genetic algorithms</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Multiple objective analysis</topic><topic>Objectives</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Penalty function</topic><topic>Power flow</topic><topic>Robotics</topic><topic>Search process</topic><topic>Test systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biswas, Partha P.</creatorcontrib><creatorcontrib>Suganthan, P. N.</creatorcontrib><creatorcontrib>Mallipeddi, R.</creatorcontrib><creatorcontrib>Amaratunga, Gehan A. J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biswas, Partha P.</au><au>Suganthan, P. N.</au><au>Mallipeddi, R.</au><au>Amaratunga, Gehan A. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>24</volume><issue>4</issue><spage>2999</spage><epage>3023</epage><pages>2999-3023</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>In power systems, optimal power flow (OPF) is a complex and constrained optimization problem in which quite often multiple and conflicting objectives are required to be optimized. The traditional way of dealing with multi-objective OPF (MOOPF) is the weighted sum method which converts the multi-objective OPF into a single-objective problem and provides a single solution from the set of Pareto solutions. This paper presents MOOPF study applying multi-objective evolutionary algorithm based on decomposition (MOEA/D) where a set of non-dominated solutions ( Pareto solutions) can be obtained in a single run of the algorithm. OPF is formulated with two or more objectives among fuel (generation) cost, emission, power loss and voltage deviation. The other important aspect in OPF problem is about satisfying power system constraints. As the search process adopted by evolutionary algorithms is unconstrained, for a constrained optimization problem like OPF, static penalty function approach has been extensively employed to discard infeasible solutions. This approach requires selection of a suitable penalty coefficient, largely done by trial-and-error, and an improper selection may often lead to violation of system constraints. In this paper, an effective constraint handling method, superiority of feasible solutions (SF), is used in conjunction with MOEA/D to handle network constraints in MOOPF study. The algorithm MOEA/D-SF is applied to standard IEEE 30-bus and IEEE 57-bus test systems. Simulation results are analyzed, especially for constraint violation and compared with recently reported results on OPF.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-019-04077-1</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2020-02, Vol.24 (4), p.2999-3023
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2917946773
source SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Artificial Intelligence
Competition
Computational Intelligence
Constraints
Control
Decomposition
Engineering
Evolutionary algorithms
Genetic algorithms
Mathematical Logic and Foundations
Mechatronics
Methodologies and Application
Multiple objective analysis
Objectives
Optimization
Optimization algorithms
Penalty function
Power flow
Robotics
Search process
Test systems
title Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A59%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-objective%20optimal%20power%20flow%20solutions%20using%20a%20constraint%20handling%20technique%20of%20evolutionary%20algorithms&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Biswas,%20Partha%20P.&rft.date=2020-02-01&rft.volume=24&rft.issue=4&rft.spage=2999&rft.epage=3023&rft.pages=2999-3023&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-019-04077-1&rft_dat=%3Cproquest_cross%3E2917946773%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917946773&rft_id=info:pmid/&rfr_iscdi=true