Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms
In power systems, optimal power flow (OPF) is a complex and constrained optimization problem in which quite often multiple and conflicting objectives are required to be optimized. The traditional way of dealing with multi-objective OPF (MOOPF) is the weighted sum method which converts the multi-obje...
Gespeichert in:
Veröffentlicht in: | Soft computing (Berlin, Germany) Germany), 2020-02, Vol.24 (4), p.2999-3023 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3023 |
---|---|
container_issue | 4 |
container_start_page | 2999 |
container_title | Soft computing (Berlin, Germany) |
container_volume | 24 |
creator | Biswas, Partha P. Suganthan, P. N. Mallipeddi, R. Amaratunga, Gehan A. J. |
description | In power systems, optimal power flow (OPF) is a complex and constrained optimization problem in which quite often multiple and conflicting objectives are required to be optimized. The traditional way of dealing with multi-objective OPF (MOOPF) is the weighted sum method which converts the multi-objective OPF into a single-objective problem and provides a single solution from the set of
Pareto
solutions. This paper presents MOOPF study applying multi-objective evolutionary algorithm based on decomposition (MOEA/D) where a set of non-dominated solutions (
Pareto
solutions) can be obtained in a single run of the algorithm. OPF is formulated with two or more objectives among fuel (generation) cost, emission, power loss and voltage deviation. The other important aspect in OPF problem is about satisfying power system constraints. As the search process adopted by evolutionary algorithms is unconstrained, for a constrained optimization problem like OPF, static penalty function approach has been extensively employed to discard infeasible solutions. This approach requires selection of a suitable penalty coefficient, largely done by trial-and-error, and an improper selection may often lead to violation of system constraints. In this paper, an effective constraint handling method, superiority of feasible solutions (SF), is used in conjunction with MOEA/D to handle network constraints in MOOPF study. The algorithm MOEA/D-SF is applied to standard IEEE 30-bus and IEEE 57-bus test systems. Simulation results are analyzed, especially for constraint violation and compared with recently reported results on OPF. |
doi_str_mv | 10.1007/s00500-019-04077-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917946773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917946773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-8cc8dba663463d4dfd55b7f2f0444e0cdacb89c0b1e9ff6911ed3f934d5b0e6c3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEqXwA6wssTaMYyeul6jiJRWxgbXl-NGmSuNgO63697i0EjtWM2Pde8dziuKWwD0B4A8RoALAQAQGBpxjclZMCKMUc8bF-W9fYl4zellcxbgGKAmv6KTYvI9darFv1landmuRH1K7UR0a_M4G5Dq_Q9F3Y2p9H9EY236JFNJ5SEG1fUIr1Zvu8JqsXvXt95gjHLLbk0eFPVLd0oc2rTbxurhwqov25lSnxdfz0-f8FS8-Xt7mjwusWUkSnmk9M42qa8pqaphxpqoa7koHjDEL2ijdzISGhljhXC0IsYY6QZmpGrC1ptPi7pg7BJ9_FJNc-zH0eaUsBeGC1ZzTrCqPKh18jME6OYR8e9hLAvKAVR6xyoxV_mKVJJvo0RSzuF_a8Bf9j-sHpzN-cQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917946773</pqid></control><display><type>article</type><title>Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Biswas, Partha P. ; Suganthan, P. N. ; Mallipeddi, R. ; Amaratunga, Gehan A. J.</creator><creatorcontrib>Biswas, Partha P. ; Suganthan, P. N. ; Mallipeddi, R. ; Amaratunga, Gehan A. J.</creatorcontrib><description>In power systems, optimal power flow (OPF) is a complex and constrained optimization problem in which quite often multiple and conflicting objectives are required to be optimized. The traditional way of dealing with multi-objective OPF (MOOPF) is the weighted sum method which converts the multi-objective OPF into a single-objective problem and provides a single solution from the set of
Pareto
solutions. This paper presents MOOPF study applying multi-objective evolutionary algorithm based on decomposition (MOEA/D) where a set of non-dominated solutions (
Pareto
solutions) can be obtained in a single run of the algorithm. OPF is formulated with two or more objectives among fuel (generation) cost, emission, power loss and voltage deviation. The other important aspect in OPF problem is about satisfying power system constraints. As the search process adopted by evolutionary algorithms is unconstrained, for a constrained optimization problem like OPF, static penalty function approach has been extensively employed to discard infeasible solutions. This approach requires selection of a suitable penalty coefficient, largely done by trial-and-error, and an improper selection may often lead to violation of system constraints. In this paper, an effective constraint handling method, superiority of feasible solutions (SF), is used in conjunction with MOEA/D to handle network constraints in MOOPF study. The algorithm MOEA/D-SF is applied to standard IEEE 30-bus and IEEE 57-bus test systems. Simulation results are analyzed, especially for constraint violation and compared with recently reported results on OPF.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-019-04077-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Competition ; Computational Intelligence ; Constraints ; Control ; Decomposition ; Engineering ; Evolutionary algorithms ; Genetic algorithms ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Multiple objective analysis ; Objectives ; Optimization ; Optimization algorithms ; Penalty function ; Power flow ; Robotics ; Search process ; Test systems</subject><ispartof>Soft computing (Berlin, Germany), 2020-02, Vol.24 (4), p.2999-3023</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-8cc8dba663463d4dfd55b7f2f0444e0cdacb89c0b1e9ff6911ed3f934d5b0e6c3</citedby><cites>FETCH-LOGICAL-c421t-8cc8dba663463d4dfd55b7f2f0444e0cdacb89c0b1e9ff6911ed3f934d5b0e6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-019-04077-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917946773?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Biswas, Partha P.</creatorcontrib><creatorcontrib>Suganthan, P. N.</creatorcontrib><creatorcontrib>Mallipeddi, R.</creatorcontrib><creatorcontrib>Amaratunga, Gehan A. J.</creatorcontrib><title>Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>In power systems, optimal power flow (OPF) is a complex and constrained optimization problem in which quite often multiple and conflicting objectives are required to be optimized. The traditional way of dealing with multi-objective OPF (MOOPF) is the weighted sum method which converts the multi-objective OPF into a single-objective problem and provides a single solution from the set of
Pareto
solutions. This paper presents MOOPF study applying multi-objective evolutionary algorithm based on decomposition (MOEA/D) where a set of non-dominated solutions (
Pareto
solutions) can be obtained in a single run of the algorithm. OPF is formulated with two or more objectives among fuel (generation) cost, emission, power loss and voltage deviation. The other important aspect in OPF problem is about satisfying power system constraints. As the search process adopted by evolutionary algorithms is unconstrained, for a constrained optimization problem like OPF, static penalty function approach has been extensively employed to discard infeasible solutions. This approach requires selection of a suitable penalty coefficient, largely done by trial-and-error, and an improper selection may often lead to violation of system constraints. In this paper, an effective constraint handling method, superiority of feasible solutions (SF), is used in conjunction with MOEA/D to handle network constraints in MOOPF study. The algorithm MOEA/D-SF is applied to standard IEEE 30-bus and IEEE 57-bus test systems. Simulation results are analyzed, especially for constraint violation and compared with recently reported results on OPF.</description><subject>Artificial Intelligence</subject><subject>Competition</subject><subject>Computational Intelligence</subject><subject>Constraints</subject><subject>Control</subject><subject>Decomposition</subject><subject>Engineering</subject><subject>Evolutionary algorithms</subject><subject>Genetic algorithms</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Multiple objective analysis</subject><subject>Objectives</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Penalty function</subject><subject>Power flow</subject><subject>Robotics</subject><subject>Search process</subject><subject>Test systems</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtOwzAQRSMEEqXwA6wssTaMYyeul6jiJRWxgbXl-NGmSuNgO63697i0EjtWM2Pde8dziuKWwD0B4A8RoALAQAQGBpxjclZMCKMUc8bF-W9fYl4zellcxbgGKAmv6KTYvI9darFv1landmuRH1K7UR0a_M4G5Dq_Q9F3Y2p9H9EY236JFNJ5SEG1fUIr1Zvu8JqsXvXt95gjHLLbk0eFPVLd0oc2rTbxurhwqov25lSnxdfz0-f8FS8-Xt7mjwusWUkSnmk9M42qa8pqaphxpqoa7koHjDEL2ijdzISGhljhXC0IsYY6QZmpGrC1ptPi7pg7BJ9_FJNc-zH0eaUsBeGC1ZzTrCqPKh18jME6OYR8e9hLAvKAVR6xyoxV_mKVJJvo0RSzuF_a8Bf9j-sHpzN-cQ</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Biswas, Partha P.</creator><creator>Suganthan, P. N.</creator><creator>Mallipeddi, R.</creator><creator>Amaratunga, Gehan A. J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20200201</creationdate><title>Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms</title><author>Biswas, Partha P. ; Suganthan, P. N. ; Mallipeddi, R. ; Amaratunga, Gehan A. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-8cc8dba663463d4dfd55b7f2f0444e0cdacb89c0b1e9ff6911ed3f934d5b0e6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Competition</topic><topic>Computational Intelligence</topic><topic>Constraints</topic><topic>Control</topic><topic>Decomposition</topic><topic>Engineering</topic><topic>Evolutionary algorithms</topic><topic>Genetic algorithms</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Multiple objective analysis</topic><topic>Objectives</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Penalty function</topic><topic>Power flow</topic><topic>Robotics</topic><topic>Search process</topic><topic>Test systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biswas, Partha P.</creatorcontrib><creatorcontrib>Suganthan, P. N.</creatorcontrib><creatorcontrib>Mallipeddi, R.</creatorcontrib><creatorcontrib>Amaratunga, Gehan A. J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biswas, Partha P.</au><au>Suganthan, P. N.</au><au>Mallipeddi, R.</au><au>Amaratunga, Gehan A. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>24</volume><issue>4</issue><spage>2999</spage><epage>3023</epage><pages>2999-3023</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>In power systems, optimal power flow (OPF) is a complex and constrained optimization problem in which quite often multiple and conflicting objectives are required to be optimized. The traditional way of dealing with multi-objective OPF (MOOPF) is the weighted sum method which converts the multi-objective OPF into a single-objective problem and provides a single solution from the set of
Pareto
solutions. This paper presents MOOPF study applying multi-objective evolutionary algorithm based on decomposition (MOEA/D) where a set of non-dominated solutions (
Pareto
solutions) can be obtained in a single run of the algorithm. OPF is formulated with two or more objectives among fuel (generation) cost, emission, power loss and voltage deviation. The other important aspect in OPF problem is about satisfying power system constraints. As the search process adopted by evolutionary algorithms is unconstrained, for a constrained optimization problem like OPF, static penalty function approach has been extensively employed to discard infeasible solutions. This approach requires selection of a suitable penalty coefficient, largely done by trial-and-error, and an improper selection may often lead to violation of system constraints. In this paper, an effective constraint handling method, superiority of feasible solutions (SF), is used in conjunction with MOEA/D to handle network constraints in MOOPF study. The algorithm MOEA/D-SF is applied to standard IEEE 30-bus and IEEE 57-bus test systems. Simulation results are analyzed, especially for constraint violation and compared with recently reported results on OPF.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-019-04077-1</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-7643 |
ispartof | Soft computing (Berlin, Germany), 2020-02, Vol.24 (4), p.2999-3023 |
issn | 1432-7643 1433-7479 |
language | eng |
recordid | cdi_proquest_journals_2917946773 |
source | SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Artificial Intelligence Competition Computational Intelligence Constraints Control Decomposition Engineering Evolutionary algorithms Genetic algorithms Mathematical Logic and Foundations Mechatronics Methodologies and Application Multiple objective analysis Objectives Optimization Optimization algorithms Penalty function Power flow Robotics Search process Test systems |
title | Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A59%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-objective%20optimal%20power%20flow%20solutions%20using%20a%20constraint%20handling%20technique%20of%20evolutionary%20algorithms&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Biswas,%20Partha%20P.&rft.date=2020-02-01&rft.volume=24&rft.issue=4&rft.spage=2999&rft.epage=3023&rft.pages=2999-3023&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-019-04077-1&rft_dat=%3Cproquest_cross%3E2917946773%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917946773&rft_id=info:pmid/&rfr_iscdi=true |