The training set and generalization in grammatical evolution for autonomous agent navigation

Over recent years, evolutionary computation research has begun to emphasize the issue of generalization. Instead of evolving solutions that are optimized for a particular problem instance, the goal is to evolve solutions that can generalize to various different scenarios. This paper compares objecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2017-08, Vol.21 (15), p.4399-4416
Hauptverfasser: Naredo, Enrique, Urbano, Paulo, Trujillo, Leonardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4416
container_issue 15
container_start_page 4399
container_title Soft computing (Berlin, Germany)
container_volume 21
creator Naredo, Enrique
Urbano, Paulo
Trujillo, Leonardo
description Over recent years, evolutionary computation research has begun to emphasize the issue of generalization. Instead of evolving solutions that are optimized for a particular problem instance, the goal is to evolve solutions that can generalize to various different scenarios. This paper compares objective-based search and novelty search on a set of generalization oriented experiments for a navigation task using grammatical evolution (GE). In particular, this paper studies the impact that the training set has on the generalization of evolved solutions, considering: (1) the training set size; (2) the manner in which the training set is chosen (random or manual); and (3) if the training set is fixed throughout the run or dynamically changed every generation. Experimental results suggest that novelty search outperforms objective-based search in terms of evolving navigation behaviors that are able to cope with different initial conditions. The traditional objective-based search requires larger training sets and its performance degrades when the training set is not fixed. On the other hand, novelty search seems to be robust to different training sets, finding general solutions in almost all of the studied conditions with almost perfect generalization in many scenarios.
doi_str_mv 10.1007/s00500-016-2072-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917939017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917939017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-dae70f46cc0600b7be4a3f771a65baa6211f62d42f2895744c5662c40d4597ec3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcB19WbRxO7lEEdYcDNuBPCnTStHdpkTNoB_fV2poIrV_d1vnPhEHLN4JYB6LsEkANkwFTGQfNMn5AZk0JkWuri9NiPSyXFOblIaQvAmc7FjLyvPxztIza-8TVNrqfoS1o77yK2zTf2TfC08bSO2HXjZLGlbh_a4XioQqQ49MGHLgyJ4sj11OO-qY_gJTmrsE3u6rfOydvT43qxzFavzy-Lh1VmBVN9VqLTUEllLSiAjd44iaLSmqHKN4iKM1YpXkpe8fsi11LaXCluJZQyL7SzYk5uJt9dDJ-DS73ZhiH68aXhBdOFKIDpUcUmlY0hpegqs4tNh_HLMDCHEM0UohlDNIcQzYHhE5NGra9d_HP-H_oBGvp1Xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917939017</pqid></control><display><type>article</type><title>The training set and generalization in grammatical evolution for autonomous agent navigation</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Naredo, Enrique ; Urbano, Paulo ; Trujillo, Leonardo</creator><creatorcontrib>Naredo, Enrique ; Urbano, Paulo ; Trujillo, Leonardo</creatorcontrib><description>Over recent years, evolutionary computation research has begun to emphasize the issue of generalization. Instead of evolving solutions that are optimized for a particular problem instance, the goal is to evolve solutions that can generalize to various different scenarios. This paper compares objective-based search and novelty search on a set of generalization oriented experiments for a navigation task using grammatical evolution (GE). In particular, this paper studies the impact that the training set has on the generalization of evolved solutions, considering: (1) the training set size; (2) the manner in which the training set is chosen (random or manual); and (3) if the training set is fixed throughout the run or dynamically changed every generation. Experimental results suggest that novelty search outperforms objective-based search in terms of evolving navigation behaviors that are able to cope with different initial conditions. The traditional objective-based search requires larger training sets and its performance degrades when the training set is not fixed. On the other hand, novelty search seems to be robust to different training sets, finding general solutions in almost all of the studied conditions with almost perfect generalization in many scenarios.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-016-2072-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Autonomous navigation ; Computational Intelligence ; Control ; Engineering ; Evolutionary computation ; Initial conditions ; Learning ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Performance degradation ; Robotics ; Searching ; Training</subject><ispartof>Soft computing (Berlin, Germany), 2017-08, Vol.21 (15), p.4399-4416</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Springer-Verlag Berlin Heidelberg 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-dae70f46cc0600b7be4a3f771a65baa6211f62d42f2895744c5662c40d4597ec3</citedby><cites>FETCH-LOGICAL-c316t-dae70f46cc0600b7be4a3f771a65baa6211f62d42f2895744c5662c40d4597ec3</cites><orcidid>0000-0003-1812-5736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-016-2072-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917939017?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Naredo, Enrique</creatorcontrib><creatorcontrib>Urbano, Paulo</creatorcontrib><creatorcontrib>Trujillo, Leonardo</creatorcontrib><title>The training set and generalization in grammatical evolution for autonomous agent navigation</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>Over recent years, evolutionary computation research has begun to emphasize the issue of generalization. Instead of evolving solutions that are optimized for a particular problem instance, the goal is to evolve solutions that can generalize to various different scenarios. This paper compares objective-based search and novelty search on a set of generalization oriented experiments for a navigation task using grammatical evolution (GE). In particular, this paper studies the impact that the training set has on the generalization of evolved solutions, considering: (1) the training set size; (2) the manner in which the training set is chosen (random or manual); and (3) if the training set is fixed throughout the run or dynamically changed every generation. Experimental results suggest that novelty search outperforms objective-based search in terms of evolving navigation behaviors that are able to cope with different initial conditions. The traditional objective-based search requires larger training sets and its performance degrades when the training set is not fixed. On the other hand, novelty search seems to be robust to different training sets, finding general solutions in almost all of the studied conditions with almost perfect generalization in many scenarios.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Autonomous navigation</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Engineering</subject><subject>Evolutionary computation</subject><subject>Initial conditions</subject><subject>Learning</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Performance degradation</subject><subject>Robotics</subject><subject>Searching</subject><subject>Training</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEtLxDAUhYMoOI7-AHcB19WbRxO7lEEdYcDNuBPCnTStHdpkTNoB_fV2poIrV_d1vnPhEHLN4JYB6LsEkANkwFTGQfNMn5AZk0JkWuri9NiPSyXFOblIaQvAmc7FjLyvPxztIza-8TVNrqfoS1o77yK2zTf2TfC08bSO2HXjZLGlbh_a4XioQqQ49MGHLgyJ4sj11OO-qY_gJTmrsE3u6rfOydvT43qxzFavzy-Lh1VmBVN9VqLTUEllLSiAjd44iaLSmqHKN4iKM1YpXkpe8fsi11LaXCluJZQyL7SzYk5uJt9dDJ-DS73ZhiH68aXhBdOFKIDpUcUmlY0hpegqs4tNh_HLMDCHEM0UohlDNIcQzYHhE5NGra9d_HP-H_oBGvp1Xg</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Naredo, Enrique</creator><creator>Urbano, Paulo</creator><creator>Trujillo, Leonardo</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-1812-5736</orcidid></search><sort><creationdate>20170801</creationdate><title>The training set and generalization in grammatical evolution for autonomous agent navigation</title><author>Naredo, Enrique ; Urbano, Paulo ; Trujillo, Leonardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-dae70f46cc0600b7be4a3f771a65baa6211f62d42f2895744c5662c40d4597ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Autonomous navigation</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Engineering</topic><topic>Evolutionary computation</topic><topic>Initial conditions</topic><topic>Learning</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Performance degradation</topic><topic>Robotics</topic><topic>Searching</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naredo, Enrique</creatorcontrib><creatorcontrib>Urbano, Paulo</creatorcontrib><creatorcontrib>Trujillo, Leonardo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naredo, Enrique</au><au>Urbano, Paulo</au><au>Trujillo, Leonardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The training set and generalization in grammatical evolution for autonomous agent navigation</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>21</volume><issue>15</issue><spage>4399</spage><epage>4416</epage><pages>4399-4416</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>Over recent years, evolutionary computation research has begun to emphasize the issue of generalization. Instead of evolving solutions that are optimized for a particular problem instance, the goal is to evolve solutions that can generalize to various different scenarios. This paper compares objective-based search and novelty search on a set of generalization oriented experiments for a navigation task using grammatical evolution (GE). In particular, this paper studies the impact that the training set has on the generalization of evolved solutions, considering: (1) the training set size; (2) the manner in which the training set is chosen (random or manual); and (3) if the training set is fixed throughout the run or dynamically changed every generation. Experimental results suggest that novelty search outperforms objective-based search in terms of evolving navigation behaviors that are able to cope with different initial conditions. The traditional objective-based search requires larger training sets and its performance degrades when the training set is not fixed. On the other hand, novelty search seems to be robust to different training sets, finding general solutions in almost all of the studied conditions with almost perfect generalization in many scenarios.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-016-2072-7</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1812-5736</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2017-08, Vol.21 (15), p.4399-4416
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2917939017
source SpringerLink Journals; ProQuest Central
subjects Algorithms
Artificial Intelligence
Autonomous navigation
Computational Intelligence
Control
Engineering
Evolutionary computation
Initial conditions
Learning
Mathematical Logic and Foundations
Mechatronics
Methodologies and Application
Performance degradation
Robotics
Searching
Training
title The training set and generalization in grammatical evolution for autonomous agent navigation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A10%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20training%20set%20and%20generalization%20in%20grammatical%20evolution%20for%20autonomous%20agent%20navigation&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Naredo,%20Enrique&rft.date=2017-08-01&rft.volume=21&rft.issue=15&rft.spage=4399&rft.epage=4416&rft.pages=4399-4416&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-016-2072-7&rft_dat=%3Cproquest_cross%3E2917939017%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917939017&rft_id=info:pmid/&rfr_iscdi=true