Compressively Sampled MRI Recovery Using Modified Iterative-Reweighted Least Square Method

Magnetic resonance imaging (MRI) is a medical imaging modality used for high-resolution soft-tissue imaging of human body. In traditional MRI acquisition methods, sampling is performed at Nyquist rate to store data in k -space. The MR image is recovered using inverse Fast Fourier Transform (FFT). Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied magnetic resonance 2016-09, Vol.47 (9), p.1033-1046
Hauptverfasser: Haider, Hassaan, Shah, Jawad Ali, Qureshi, Ijaz Mansoor, Omer, Hammad, Kadir, Kushsairy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1046
container_issue 9
container_start_page 1033
container_title Applied magnetic resonance
container_volume 47
creator Haider, Hassaan
Shah, Jawad Ali
Qureshi, Ijaz Mansoor
Omer, Hammad
Kadir, Kushsairy
description Magnetic resonance imaging (MRI) is a medical imaging modality used for high-resolution soft-tissue imaging of human body. In traditional MRI acquisition methods, sampling is performed at Nyquist rate to store data in k -space. The MR image is recovered using inverse Fast Fourier Transform (FFT). This approach results in slow data acquisition process, which is uncomfortable for the patients. Compressed Sensing (CS) acquisition approach offers nearly perfect recovery of MR image using non-linear reconstruction algorithms even from partial k -space data. This study presents a novel method to reconstruct MR image from highly under-sampled data using modified Iterative-Reweighted Least Square (IRLS) method with additional data consistency constraints. IRLS is an effective numerical method used in convex optimization problems. The proposed algorithm was applied on original human brain and Shepp–Logan phantom image, and the data acquired from the MRI scanner at St. Mary’s Hospital, London. The experimental results show that the proposed algorithm outperforms Projection onto Convex Sets (POCS), Separable Surrogate Functional (SSF), Iterative-Reweighted Least Squares (IRLS), Zero Filling (ZF), and Low-Resolution (LR) methods based on the parameters, e.g. Peak Signal-to-Noise Ratio (PSNR), Improved Signal-to-Noise Ratio (ISNR), Fitness, Correlation, Structural SIMilarity (SSIM) index, and Artifact Power (AP).
doi_str_mv 10.1007/s00723-016-0810-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917936636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917936636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e75b941cb671843b0bfe016e4c36c3c0bada1a980a672413880065329bc68ae93</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLeA59XZbLIfRyl-FFqE1l68LJvNpE1pm3Q3rfTfuyWCJy8zMPO88zIvIfcMHhmAfAqxpJwCExQUA6ouyIAJxqnMQV6SAWguqeaZvCY3IawBWK6YHJCvUbNtPYZQH3FzSuZ2226wTKazcTJD1xzRn5JFqHfLZNqUdVXH3bhDb7vI0xl-Y71cdXE4QRu6ZL4_WI_JFLtVU96Sq8puAt799iFZvL58jt7p5ONtPHqeUMeZ6CjKvNAZc4WQTGW8gKLC-AZmjgvHHRS2tMxqBVbINGNcKQCR81QXTiiLmg_JQ3-39c3-gKEz6-bgd9HSpJpJzYXgIlKsp5xvQvBYmdbXW-tPhoE5R2j6CE30NucIjYqatNeEyO6W6P8u_y_6Aa6kc1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917936636</pqid></control><display><type>article</type><title>Compressively Sampled MRI Recovery Using Modified Iterative-Reweighted Least Square Method</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Haider, Hassaan ; Shah, Jawad Ali ; Qureshi, Ijaz Mansoor ; Omer, Hammad ; Kadir, Kushsairy</creator><creatorcontrib>Haider, Hassaan ; Shah, Jawad Ali ; Qureshi, Ijaz Mansoor ; Omer, Hammad ; Kadir, Kushsairy</creatorcontrib><description>Magnetic resonance imaging (MRI) is a medical imaging modality used for high-resolution soft-tissue imaging of human body. In traditional MRI acquisition methods, sampling is performed at Nyquist rate to store data in k -space. The MR image is recovered using inverse Fast Fourier Transform (FFT). This approach results in slow data acquisition process, which is uncomfortable for the patients. Compressed Sensing (CS) acquisition approach offers nearly perfect recovery of MR image using non-linear reconstruction algorithms even from partial k -space data. This study presents a novel method to reconstruct MR image from highly under-sampled data using modified Iterative-Reweighted Least Square (IRLS) method with additional data consistency constraints. IRLS is an effective numerical method used in convex optimization problems. The proposed algorithm was applied on original human brain and Shepp–Logan phantom image, and the data acquired from the MRI scanner at St. Mary’s Hospital, London. The experimental results show that the proposed algorithm outperforms Projection onto Convex Sets (POCS), Separable Surrogate Functional (SSF), Iterative-Reweighted Least Squares (IRLS), Zero Filling (ZF), and Low-Resolution (LR) methods based on the parameters, e.g. Peak Signal-to-Noise Ratio (PSNR), Improved Signal-to-Noise Ratio (ISNR), Fitness, Correlation, Structural SIMilarity (SSIM) index, and Artifact Power (AP).</description><identifier>ISSN: 0937-9347</identifier><identifier>EISSN: 1613-7507</identifier><identifier>DOI: 10.1007/s00723-016-0810-8</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Algorithms ; Atoms and Molecules in Strong Fields ; Computational geometry ; Convexity ; Data acquisition ; Fast Fourier transformations ; Fourier transforms ; Hilbert space ; Image acquisition ; Image reconstruction ; Image resolution ; Iterative methods ; Laser Matter Interaction ; Least squares ; Magnetic resonance imaging ; Medical imaging ; Methods ; Numerical methods ; Organic Chemistry ; Physical Chemistry ; Physics ; Physics and Astronomy ; Recovery ; Sampling techniques ; Signal to noise ratio ; Solid State Physics ; Sparsity ; Spectroscopy/Spectrometry ; Wavelet transforms</subject><ispartof>Applied magnetic resonance, 2016-09, Vol.47 (9), p.1033-1046</ispartof><rights>Springer-Verlag Wien 2016</rights><rights>Springer-Verlag Wien 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e75b941cb671843b0bfe016e4c36c3c0bada1a980a672413880065329bc68ae93</citedby><cites>FETCH-LOGICAL-c316t-e75b941cb671843b0bfe016e4c36c3c0bada1a980a672413880065329bc68ae93</cites><orcidid>0000-0002-2662-604X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00723-016-0810-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917936636?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,21389,21390,21391,23256,27924,27925,33530,33703,33744,34005,34314,41488,42557,43659,43787,43805,43953,44067,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Haider, Hassaan</creatorcontrib><creatorcontrib>Shah, Jawad Ali</creatorcontrib><creatorcontrib>Qureshi, Ijaz Mansoor</creatorcontrib><creatorcontrib>Omer, Hammad</creatorcontrib><creatorcontrib>Kadir, Kushsairy</creatorcontrib><title>Compressively Sampled MRI Recovery Using Modified Iterative-Reweighted Least Square Method</title><title>Applied magnetic resonance</title><addtitle>Appl Magn Reson</addtitle><description>Magnetic resonance imaging (MRI) is a medical imaging modality used for high-resolution soft-tissue imaging of human body. In traditional MRI acquisition methods, sampling is performed at Nyquist rate to store data in k -space. The MR image is recovered using inverse Fast Fourier Transform (FFT). This approach results in slow data acquisition process, which is uncomfortable for the patients. Compressed Sensing (CS) acquisition approach offers nearly perfect recovery of MR image using non-linear reconstruction algorithms even from partial k -space data. This study presents a novel method to reconstruct MR image from highly under-sampled data using modified Iterative-Reweighted Least Square (IRLS) method with additional data consistency constraints. IRLS is an effective numerical method used in convex optimization problems. The proposed algorithm was applied on original human brain and Shepp–Logan phantom image, and the data acquired from the MRI scanner at St. Mary’s Hospital, London. The experimental results show that the proposed algorithm outperforms Projection onto Convex Sets (POCS), Separable Surrogate Functional (SSF), Iterative-Reweighted Least Squares (IRLS), Zero Filling (ZF), and Low-Resolution (LR) methods based on the parameters, e.g. Peak Signal-to-Noise Ratio (PSNR), Improved Signal-to-Noise Ratio (ISNR), Fitness, Correlation, Structural SIMilarity (SSIM) index, and Artifact Power (AP).</description><subject>Algorithms</subject><subject>Atoms and Molecules in Strong Fields</subject><subject>Computational geometry</subject><subject>Convexity</subject><subject>Data acquisition</subject><subject>Fast Fourier transformations</subject><subject>Fourier transforms</subject><subject>Hilbert space</subject><subject>Image acquisition</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Iterative methods</subject><subject>Laser Matter Interaction</subject><subject>Least squares</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Methods</subject><subject>Numerical methods</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Recovery</subject><subject>Sampling techniques</subject><subject>Signal to noise ratio</subject><subject>Solid State Physics</subject><subject>Sparsity</subject><subject>Spectroscopy/Spectrometry</subject><subject>Wavelet transforms</subject><issn>0937-9347</issn><issn>1613-7507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1Lw0AQhhdRsFZ_gLeA59XZbLIfRyl-FFqE1l68LJvNpE1pm3Q3rfTfuyWCJy8zMPO88zIvIfcMHhmAfAqxpJwCExQUA6ouyIAJxqnMQV6SAWguqeaZvCY3IawBWK6YHJCvUbNtPYZQH3FzSuZ2226wTKazcTJD1xzRn5JFqHfLZNqUdVXH3bhDb7vI0xl-Y71cdXE4QRu6ZL4_WI_JFLtVU96Sq8puAt799iFZvL58jt7p5ONtPHqeUMeZ6CjKvNAZc4WQTGW8gKLC-AZmjgvHHRS2tMxqBVbINGNcKQCR81QXTiiLmg_JQ3-39c3-gKEz6-bgd9HSpJpJzYXgIlKsp5xvQvBYmdbXW-tPhoE5R2j6CE30NucIjYqatNeEyO6W6P8u_y_6Aa6kc1Q</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Haider, Hassaan</creator><creator>Shah, Jawad Ali</creator><creator>Qureshi, Ijaz Mansoor</creator><creator>Omer, Hammad</creator><creator>Kadir, Kushsairy</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2662-604X</orcidid></search><sort><creationdate>20160901</creationdate><title>Compressively Sampled MRI Recovery Using Modified Iterative-Reweighted Least Square Method</title><author>Haider, Hassaan ; Shah, Jawad Ali ; Qureshi, Ijaz Mansoor ; Omer, Hammad ; Kadir, Kushsairy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e75b941cb671843b0bfe016e4c36c3c0bada1a980a672413880065329bc68ae93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Atoms and Molecules in Strong Fields</topic><topic>Computational geometry</topic><topic>Convexity</topic><topic>Data acquisition</topic><topic>Fast Fourier transformations</topic><topic>Fourier transforms</topic><topic>Hilbert space</topic><topic>Image acquisition</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Iterative methods</topic><topic>Laser Matter Interaction</topic><topic>Least squares</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Methods</topic><topic>Numerical methods</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Recovery</topic><topic>Sampling techniques</topic><topic>Signal to noise ratio</topic><topic>Solid State Physics</topic><topic>Sparsity</topic><topic>Spectroscopy/Spectrometry</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haider, Hassaan</creatorcontrib><creatorcontrib>Shah, Jawad Ali</creatorcontrib><creatorcontrib>Qureshi, Ijaz Mansoor</creatorcontrib><creatorcontrib>Omer, Hammad</creatorcontrib><creatorcontrib>Kadir, Kushsairy</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Science Database (ProQuest)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Applied magnetic resonance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haider, Hassaan</au><au>Shah, Jawad Ali</au><au>Qureshi, Ijaz Mansoor</au><au>Omer, Hammad</au><au>Kadir, Kushsairy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compressively Sampled MRI Recovery Using Modified Iterative-Reweighted Least Square Method</atitle><jtitle>Applied magnetic resonance</jtitle><stitle>Appl Magn Reson</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>47</volume><issue>9</issue><spage>1033</spage><epage>1046</epage><pages>1033-1046</pages><issn>0937-9347</issn><eissn>1613-7507</eissn><abstract>Magnetic resonance imaging (MRI) is a medical imaging modality used for high-resolution soft-tissue imaging of human body. In traditional MRI acquisition methods, sampling is performed at Nyquist rate to store data in k -space. The MR image is recovered using inverse Fast Fourier Transform (FFT). This approach results in slow data acquisition process, which is uncomfortable for the patients. Compressed Sensing (CS) acquisition approach offers nearly perfect recovery of MR image using non-linear reconstruction algorithms even from partial k -space data. This study presents a novel method to reconstruct MR image from highly under-sampled data using modified Iterative-Reweighted Least Square (IRLS) method with additional data consistency constraints. IRLS is an effective numerical method used in convex optimization problems. The proposed algorithm was applied on original human brain and Shepp–Logan phantom image, and the data acquired from the MRI scanner at St. Mary’s Hospital, London. The experimental results show that the proposed algorithm outperforms Projection onto Convex Sets (POCS), Separable Surrogate Functional (SSF), Iterative-Reweighted Least Squares (IRLS), Zero Filling (ZF), and Low-Resolution (LR) methods based on the parameters, e.g. Peak Signal-to-Noise Ratio (PSNR), Improved Signal-to-Noise Ratio (ISNR), Fitness, Correlation, Structural SIMilarity (SSIM) index, and Artifact Power (AP).</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00723-016-0810-8</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2662-604X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0937-9347
ispartof Applied magnetic resonance, 2016-09, Vol.47 (9), p.1033-1046
issn 0937-9347
1613-7507
language eng
recordid cdi_proquest_journals_2917936636
source ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; ProQuest Central Korea; ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Atoms and Molecules in Strong Fields
Computational geometry
Convexity
Data acquisition
Fast Fourier transformations
Fourier transforms
Hilbert space
Image acquisition
Image reconstruction
Image resolution
Iterative methods
Laser Matter Interaction
Least squares
Magnetic resonance imaging
Medical imaging
Methods
Numerical methods
Organic Chemistry
Physical Chemistry
Physics
Physics and Astronomy
Recovery
Sampling techniques
Signal to noise ratio
Solid State Physics
Sparsity
Spectroscopy/Spectrometry
Wavelet transforms
title Compressively Sampled MRI Recovery Using Modified Iterative-Reweighted Least Square Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A31%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compressively%20Sampled%20MRI%20Recovery%20Using%20Modified%20Iterative-Reweighted%20Least%20Square%20Method&rft.jtitle=Applied%20magnetic%20resonance&rft.au=Haider,%20Hassaan&rft.date=2016-09-01&rft.volume=47&rft.issue=9&rft.spage=1033&rft.epage=1046&rft.pages=1033-1046&rft.issn=0937-9347&rft.eissn=1613-7507&rft_id=info:doi/10.1007/s00723-016-0810-8&rft_dat=%3Cproquest_cross%3E2917936636%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917936636&rft_id=info:pmid/&rfr_iscdi=true