Compressively Sampled MRI Recovery Using Modified Iterative-Reweighted Least Square Method
Magnetic resonance imaging (MRI) is a medical imaging modality used for high-resolution soft-tissue imaging of human body. In traditional MRI acquisition methods, sampling is performed at Nyquist rate to store data in k -space. The MR image is recovered using inverse Fast Fourier Transform (FFT). Th...
Gespeichert in:
Veröffentlicht in: | Applied magnetic resonance 2016-09, Vol.47 (9), p.1033-1046 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1046 |
---|---|
container_issue | 9 |
container_start_page | 1033 |
container_title | Applied magnetic resonance |
container_volume | 47 |
creator | Haider, Hassaan Shah, Jawad Ali Qureshi, Ijaz Mansoor Omer, Hammad Kadir, Kushsairy |
description | Magnetic resonance imaging (MRI) is a medical imaging modality used for high-resolution soft-tissue imaging of human body. In traditional MRI acquisition methods, sampling is performed at Nyquist rate to store data in
k
-space. The MR image is recovered using inverse Fast Fourier Transform (FFT). This approach results in slow data acquisition process, which is uncomfortable for the patients. Compressed Sensing (CS) acquisition approach offers nearly perfect recovery of MR image using non-linear reconstruction algorithms even from partial
k
-space data. This study presents a novel method to reconstruct MR image from highly under-sampled data using modified Iterative-Reweighted Least Square (IRLS) method with additional data consistency constraints. IRLS is an effective numerical method used in convex optimization problems. The proposed algorithm was applied on original human brain and Shepp–Logan phantom image, and the data acquired from the MRI scanner at St. Mary’s Hospital, London. The experimental results show that the proposed algorithm outperforms Projection onto Convex Sets (POCS), Separable Surrogate Functional (SSF), Iterative-Reweighted Least Squares (IRLS), Zero Filling (ZF), and Low-Resolution (LR) methods based on the parameters, e.g. Peak Signal-to-Noise Ratio (PSNR), Improved Signal-to-Noise Ratio (ISNR), Fitness, Correlation, Structural SIMilarity (SSIM) index, and Artifact Power (AP). |
doi_str_mv | 10.1007/s00723-016-0810-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917936636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917936636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e75b941cb671843b0bfe016e4c36c3c0bada1a980a672413880065329bc68ae93</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLeA59XZbLIfRyl-FFqE1l68LJvNpE1pm3Q3rfTfuyWCJy8zMPO88zIvIfcMHhmAfAqxpJwCExQUA6ouyIAJxqnMQV6SAWguqeaZvCY3IawBWK6YHJCvUbNtPYZQH3FzSuZ2226wTKazcTJD1xzRn5JFqHfLZNqUdVXH3bhDb7vI0xl-Y71cdXE4QRu6ZL4_WI_JFLtVU96Sq8puAt799iFZvL58jt7p5ONtPHqeUMeZ6CjKvNAZc4WQTGW8gKLC-AZmjgvHHRS2tMxqBVbINGNcKQCR81QXTiiLmg_JQ3-39c3-gKEz6-bgd9HSpJpJzYXgIlKsp5xvQvBYmdbXW-tPhoE5R2j6CE30NucIjYqatNeEyO6W6P8u_y_6Aa6kc1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917936636</pqid></control><display><type>article</type><title>Compressively Sampled MRI Recovery Using Modified Iterative-Reweighted Least Square Method</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Haider, Hassaan ; Shah, Jawad Ali ; Qureshi, Ijaz Mansoor ; Omer, Hammad ; Kadir, Kushsairy</creator><creatorcontrib>Haider, Hassaan ; Shah, Jawad Ali ; Qureshi, Ijaz Mansoor ; Omer, Hammad ; Kadir, Kushsairy</creatorcontrib><description>Magnetic resonance imaging (MRI) is a medical imaging modality used for high-resolution soft-tissue imaging of human body. In traditional MRI acquisition methods, sampling is performed at Nyquist rate to store data in
k
-space. The MR image is recovered using inverse Fast Fourier Transform (FFT). This approach results in slow data acquisition process, which is uncomfortable for the patients. Compressed Sensing (CS) acquisition approach offers nearly perfect recovery of MR image using non-linear reconstruction algorithms even from partial
k
-space data. This study presents a novel method to reconstruct MR image from highly under-sampled data using modified Iterative-Reweighted Least Square (IRLS) method with additional data consistency constraints. IRLS is an effective numerical method used in convex optimization problems. The proposed algorithm was applied on original human brain and Shepp–Logan phantom image, and the data acquired from the MRI scanner at St. Mary’s Hospital, London. The experimental results show that the proposed algorithm outperforms Projection onto Convex Sets (POCS), Separable Surrogate Functional (SSF), Iterative-Reweighted Least Squares (IRLS), Zero Filling (ZF), and Low-Resolution (LR) methods based on the parameters, e.g. Peak Signal-to-Noise Ratio (PSNR), Improved Signal-to-Noise Ratio (ISNR), Fitness, Correlation, Structural SIMilarity (SSIM) index, and Artifact Power (AP).</description><identifier>ISSN: 0937-9347</identifier><identifier>EISSN: 1613-7507</identifier><identifier>DOI: 10.1007/s00723-016-0810-8</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Algorithms ; Atoms and Molecules in Strong Fields ; Computational geometry ; Convexity ; Data acquisition ; Fast Fourier transformations ; Fourier transforms ; Hilbert space ; Image acquisition ; Image reconstruction ; Image resolution ; Iterative methods ; Laser Matter Interaction ; Least squares ; Magnetic resonance imaging ; Medical imaging ; Methods ; Numerical methods ; Organic Chemistry ; Physical Chemistry ; Physics ; Physics and Astronomy ; Recovery ; Sampling techniques ; Signal to noise ratio ; Solid State Physics ; Sparsity ; Spectroscopy/Spectrometry ; Wavelet transforms</subject><ispartof>Applied magnetic resonance, 2016-09, Vol.47 (9), p.1033-1046</ispartof><rights>Springer-Verlag Wien 2016</rights><rights>Springer-Verlag Wien 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e75b941cb671843b0bfe016e4c36c3c0bada1a980a672413880065329bc68ae93</citedby><cites>FETCH-LOGICAL-c316t-e75b941cb671843b0bfe016e4c36c3c0bada1a980a672413880065329bc68ae93</cites><orcidid>0000-0002-2662-604X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00723-016-0810-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917936636?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,21389,21390,21391,23256,27924,27925,33530,33703,33744,34005,34314,41488,42557,43659,43787,43805,43953,44067,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Haider, Hassaan</creatorcontrib><creatorcontrib>Shah, Jawad Ali</creatorcontrib><creatorcontrib>Qureshi, Ijaz Mansoor</creatorcontrib><creatorcontrib>Omer, Hammad</creatorcontrib><creatorcontrib>Kadir, Kushsairy</creatorcontrib><title>Compressively Sampled MRI Recovery Using Modified Iterative-Reweighted Least Square Method</title><title>Applied magnetic resonance</title><addtitle>Appl Magn Reson</addtitle><description>Magnetic resonance imaging (MRI) is a medical imaging modality used for high-resolution soft-tissue imaging of human body. In traditional MRI acquisition methods, sampling is performed at Nyquist rate to store data in
k
-space. The MR image is recovered using inverse Fast Fourier Transform (FFT). This approach results in slow data acquisition process, which is uncomfortable for the patients. Compressed Sensing (CS) acquisition approach offers nearly perfect recovery of MR image using non-linear reconstruction algorithms even from partial
k
-space data. This study presents a novel method to reconstruct MR image from highly under-sampled data using modified Iterative-Reweighted Least Square (IRLS) method with additional data consistency constraints. IRLS is an effective numerical method used in convex optimization problems. The proposed algorithm was applied on original human brain and Shepp–Logan phantom image, and the data acquired from the MRI scanner at St. Mary’s Hospital, London. The experimental results show that the proposed algorithm outperforms Projection onto Convex Sets (POCS), Separable Surrogate Functional (SSF), Iterative-Reweighted Least Squares (IRLS), Zero Filling (ZF), and Low-Resolution (LR) methods based on the parameters, e.g. Peak Signal-to-Noise Ratio (PSNR), Improved Signal-to-Noise Ratio (ISNR), Fitness, Correlation, Structural SIMilarity (SSIM) index, and Artifact Power (AP).</description><subject>Algorithms</subject><subject>Atoms and Molecules in Strong Fields</subject><subject>Computational geometry</subject><subject>Convexity</subject><subject>Data acquisition</subject><subject>Fast Fourier transformations</subject><subject>Fourier transforms</subject><subject>Hilbert space</subject><subject>Image acquisition</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Iterative methods</subject><subject>Laser Matter Interaction</subject><subject>Least squares</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Methods</subject><subject>Numerical methods</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Recovery</subject><subject>Sampling techniques</subject><subject>Signal to noise ratio</subject><subject>Solid State Physics</subject><subject>Sparsity</subject><subject>Spectroscopy/Spectrometry</subject><subject>Wavelet transforms</subject><issn>0937-9347</issn><issn>1613-7507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1Lw0AQhhdRsFZ_gLeA59XZbLIfRyl-FFqE1l68LJvNpE1pm3Q3rfTfuyWCJy8zMPO88zIvIfcMHhmAfAqxpJwCExQUA6ouyIAJxqnMQV6SAWguqeaZvCY3IawBWK6YHJCvUbNtPYZQH3FzSuZ2226wTKazcTJD1xzRn5JFqHfLZNqUdVXH3bhDb7vI0xl-Y71cdXE4QRu6ZL4_WI_JFLtVU96Sq8puAt799iFZvL58jt7p5ONtPHqeUMeZ6CjKvNAZc4WQTGW8gKLC-AZmjgvHHRS2tMxqBVbINGNcKQCR81QXTiiLmg_JQ3-39c3-gKEz6-bgd9HSpJpJzYXgIlKsp5xvQvBYmdbXW-tPhoE5R2j6CE30NucIjYqatNeEyO6W6P8u_y_6Aa6kc1Q</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Haider, Hassaan</creator><creator>Shah, Jawad Ali</creator><creator>Qureshi, Ijaz Mansoor</creator><creator>Omer, Hammad</creator><creator>Kadir, Kushsairy</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2662-604X</orcidid></search><sort><creationdate>20160901</creationdate><title>Compressively Sampled MRI Recovery Using Modified Iterative-Reweighted Least Square Method</title><author>Haider, Hassaan ; Shah, Jawad Ali ; Qureshi, Ijaz Mansoor ; Omer, Hammad ; Kadir, Kushsairy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e75b941cb671843b0bfe016e4c36c3c0bada1a980a672413880065329bc68ae93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Atoms and Molecules in Strong Fields</topic><topic>Computational geometry</topic><topic>Convexity</topic><topic>Data acquisition</topic><topic>Fast Fourier transformations</topic><topic>Fourier transforms</topic><topic>Hilbert space</topic><topic>Image acquisition</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Iterative methods</topic><topic>Laser Matter Interaction</topic><topic>Least squares</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Methods</topic><topic>Numerical methods</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Recovery</topic><topic>Sampling techniques</topic><topic>Signal to noise ratio</topic><topic>Solid State Physics</topic><topic>Sparsity</topic><topic>Spectroscopy/Spectrometry</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haider, Hassaan</creatorcontrib><creatorcontrib>Shah, Jawad Ali</creatorcontrib><creatorcontrib>Qureshi, Ijaz Mansoor</creatorcontrib><creatorcontrib>Omer, Hammad</creatorcontrib><creatorcontrib>Kadir, Kushsairy</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Science Database (ProQuest)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Applied magnetic resonance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haider, Hassaan</au><au>Shah, Jawad Ali</au><au>Qureshi, Ijaz Mansoor</au><au>Omer, Hammad</au><au>Kadir, Kushsairy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compressively Sampled MRI Recovery Using Modified Iterative-Reweighted Least Square Method</atitle><jtitle>Applied magnetic resonance</jtitle><stitle>Appl Magn Reson</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>47</volume><issue>9</issue><spage>1033</spage><epage>1046</epage><pages>1033-1046</pages><issn>0937-9347</issn><eissn>1613-7507</eissn><abstract>Magnetic resonance imaging (MRI) is a medical imaging modality used for high-resolution soft-tissue imaging of human body. In traditional MRI acquisition methods, sampling is performed at Nyquist rate to store data in
k
-space. The MR image is recovered using inverse Fast Fourier Transform (FFT). This approach results in slow data acquisition process, which is uncomfortable for the patients. Compressed Sensing (CS) acquisition approach offers nearly perfect recovery of MR image using non-linear reconstruction algorithms even from partial
k
-space data. This study presents a novel method to reconstruct MR image from highly under-sampled data using modified Iterative-Reweighted Least Square (IRLS) method with additional data consistency constraints. IRLS is an effective numerical method used in convex optimization problems. The proposed algorithm was applied on original human brain and Shepp–Logan phantom image, and the data acquired from the MRI scanner at St. Mary’s Hospital, London. The experimental results show that the proposed algorithm outperforms Projection onto Convex Sets (POCS), Separable Surrogate Functional (SSF), Iterative-Reweighted Least Squares (IRLS), Zero Filling (ZF), and Low-Resolution (LR) methods based on the parameters, e.g. Peak Signal-to-Noise Ratio (PSNR), Improved Signal-to-Noise Ratio (ISNR), Fitness, Correlation, Structural SIMilarity (SSIM) index, and Artifact Power (AP).</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00723-016-0810-8</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2662-604X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0937-9347 |
ispartof | Applied magnetic resonance, 2016-09, Vol.47 (9), p.1033-1046 |
issn | 0937-9347 1613-7507 |
language | eng |
recordid | cdi_proquest_journals_2917936636 |
source | ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; ProQuest Central Korea; ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Algorithms Atoms and Molecules in Strong Fields Computational geometry Convexity Data acquisition Fast Fourier transformations Fourier transforms Hilbert space Image acquisition Image reconstruction Image resolution Iterative methods Laser Matter Interaction Least squares Magnetic resonance imaging Medical imaging Methods Numerical methods Organic Chemistry Physical Chemistry Physics Physics and Astronomy Recovery Sampling techniques Signal to noise ratio Solid State Physics Sparsity Spectroscopy/Spectrometry Wavelet transforms |
title | Compressively Sampled MRI Recovery Using Modified Iterative-Reweighted Least Square Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A31%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compressively%20Sampled%20MRI%20Recovery%20Using%20Modified%20Iterative-Reweighted%20Least%20Square%20Method&rft.jtitle=Applied%20magnetic%20resonance&rft.au=Haider,%20Hassaan&rft.date=2016-09-01&rft.volume=47&rft.issue=9&rft.spage=1033&rft.epage=1046&rft.pages=1033-1046&rft.issn=0937-9347&rft.eissn=1613-7507&rft_id=info:doi/10.1007/s00723-016-0810-8&rft_dat=%3Cproquest_cross%3E2917936636%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917936636&rft_id=info:pmid/&rfr_iscdi=true |