Age-dependent face diversification via latent space analysis

Facial age transformation methods can change facial appearance according to the target age. However, most existing methods do not consider that people get older with different attribute changes (e.g., wrinkles, hair volume, and face shape) depending on their circumstances and environment. Diversifyi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Visual computer 2023-08, Vol.39 (8), p.3221-3233
Hauptverfasser: Ito, Taishi, Endo, Yuki, Kanamori, Yoshihiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3233
container_issue 8
container_start_page 3221
container_title The Visual computer
container_volume 39
creator Ito, Taishi
Endo, Yuki
Kanamori, Yoshihiro
description Facial age transformation methods can change facial appearance according to the target age. However, most existing methods do not consider that people get older with different attribute changes (e.g., wrinkles, hair volume, and face shape) depending on their circumstances and environment. Diversifying such age-dependent attributes while preserving a person’s identity is crucial to broaden the applications of age transformation. In addition, the accuracy of age transformation to childhood is limited due to dataset bias. To solve these problems, we propose an age transformation method based on latent space analysis of StyleGAN. Our method obtains diverse age-transformed images by randomly manipulating age-dependent attributes in a latent space. To do so, we analyze the latent space and perturb channels affecting age-dependent attributes. We then optimize the perturbed latent code to refine the age and identity of the output image. We also present an unsupervised approach for improving age transformation to childhood. Our approach is based on the assumption that existing methods cannot sufficiently move a latent code toward a desired direction. We extrapolate an estimated latent path and iteratively update the latent code along the extrapolated path until the output image reaches the target age. Quantitative and qualitative comparisons with existing methods show that our method improves output diversity and preserves the target age and identity. We also show that our method can more accurately perform age transformation to childhood.
doi_str_mv 10.1007/s00371-023-03000-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917935647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917935647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-696d56d6628d5d77ad34d1415b440029bb73a4babe94a32d770a9cf3774dc7853</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gKeC5-gkkzYNeFkWXYUFL3oOaZMuWWpbk-5C396sFbx5Gob5_p_hI-SWwT0DkA8RACWjwJECAgCdzsiCCeSUI8vPyQKYLCmXpbokVzHuIe1SqAV5XO0ctW5wnXXdmDWmdpn1Rxeib3xtRt932dGbrDXj6R6HE2A6007Rx2ty0Zg2upvfuSQfz0_v6xe6fdu8rldbWiMTIy1UYfPCFgUvbW6lNBaFZYLllRAAXFWVRCMqUzklDPJEgFF1g-lDW8syxyW5m3uH0H8dXBz1vj-E9ETUXDGpMC-ETBSfqTr0MQbX6CH4TxMmzUCfLOnZkk6W9I8lPaUQzqGY4G7nwl_1P6lv8lhp2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917935647</pqid></control><display><type>article</type><title>Age-dependent face diversification via latent space analysis</title><source>SpringerLink (Online service)</source><source>ProQuest Central</source><creator>Ito, Taishi ; Endo, Yuki ; Kanamori, Yoshihiro</creator><creatorcontrib>Ito, Taishi ; Endo, Yuki ; Kanamori, Yoshihiro</creatorcontrib><description>Facial age transformation methods can change facial appearance according to the target age. However, most existing methods do not consider that people get older with different attribute changes (e.g., wrinkles, hair volume, and face shape) depending on their circumstances and environment. Diversifying such age-dependent attributes while preserving a person’s identity is crucial to broaden the applications of age transformation. In addition, the accuracy of age transformation to childhood is limited due to dataset bias. To solve these problems, we propose an age transformation method based on latent space analysis of StyleGAN. Our method obtains diverse age-transformed images by randomly manipulating age-dependent attributes in a latent space. To do so, we analyze the latent space and perturb channels affecting age-dependent attributes. We then optimize the perturbed latent code to refine the age and identity of the output image. We also present an unsupervised approach for improving age transformation to childhood. Our approach is based on the assumption that existing methods cannot sufficiently move a latent code toward a desired direction. We extrapolate an estimated latent path and iteratively update the latent code along the extrapolated path until the output image reaches the target age. Quantitative and qualitative comparisons with existing methods show that our method improves output diversity and preserves the target age and identity. We also show that our method can more accurately perform age transformation to childhood.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-023-03000-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Age ; Age groups ; Artificial Intelligence ; Computer Graphics ; Computer Science ; Correlation analysis ; Editing ; Image manipulation ; Image Processing and Computer Vision ; Methods ; Original Article ; Space exploration ; Transformations</subject><ispartof>The Visual computer, 2023-08, Vol.39 (8), p.3221-3233</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-696d56d6628d5d77ad34d1415b440029bb73a4babe94a32d770a9cf3774dc7853</cites><orcidid>0009-0008-5374-3998</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-023-03000-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917935647?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Ito, Taishi</creatorcontrib><creatorcontrib>Endo, Yuki</creatorcontrib><creatorcontrib>Kanamori, Yoshihiro</creatorcontrib><title>Age-dependent face diversification via latent space analysis</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>Facial age transformation methods can change facial appearance according to the target age. However, most existing methods do not consider that people get older with different attribute changes (e.g., wrinkles, hair volume, and face shape) depending on their circumstances and environment. Diversifying such age-dependent attributes while preserving a person’s identity is crucial to broaden the applications of age transformation. In addition, the accuracy of age transformation to childhood is limited due to dataset bias. To solve these problems, we propose an age transformation method based on latent space analysis of StyleGAN. Our method obtains diverse age-transformed images by randomly manipulating age-dependent attributes in a latent space. To do so, we analyze the latent space and perturb channels affecting age-dependent attributes. We then optimize the perturbed latent code to refine the age and identity of the output image. We also present an unsupervised approach for improving age transformation to childhood. Our approach is based on the assumption that existing methods cannot sufficiently move a latent code toward a desired direction. We extrapolate an estimated latent path and iteratively update the latent code along the extrapolated path until the output image reaches the target age. Quantitative and qualitative comparisons with existing methods show that our method improves output diversity and preserves the target age and identity. We also show that our method can more accurately perform age transformation to childhood.</description><subject>Accuracy</subject><subject>Age</subject><subject>Age groups</subject><subject>Artificial Intelligence</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Correlation analysis</subject><subject>Editing</subject><subject>Image manipulation</subject><subject>Image Processing and Computer Vision</subject><subject>Methods</subject><subject>Original Article</subject><subject>Space exploration</subject><subject>Transformations</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMFKxDAQhoMouK6-gKeC5-gkkzYNeFkWXYUFL3oOaZMuWWpbk-5C396sFbx5Gob5_p_hI-SWwT0DkA8RACWjwJECAgCdzsiCCeSUI8vPyQKYLCmXpbokVzHuIe1SqAV5XO0ctW5wnXXdmDWmdpn1Rxeib3xtRt932dGbrDXj6R6HE2A6007Rx2ty0Zg2upvfuSQfz0_v6xe6fdu8rldbWiMTIy1UYfPCFgUvbW6lNBaFZYLllRAAXFWVRCMqUzklDPJEgFF1g-lDW8syxyW5m3uH0H8dXBz1vj-E9ETUXDGpMC-ETBSfqTr0MQbX6CH4TxMmzUCfLOnZkk6W9I8lPaUQzqGY4G7nwl_1P6lv8lhp2w</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Ito, Taishi</creator><creator>Endo, Yuki</creator><creator>Kanamori, Yoshihiro</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0009-0008-5374-3998</orcidid></search><sort><creationdate>20230801</creationdate><title>Age-dependent face diversification via latent space analysis</title><author>Ito, Taishi ; Endo, Yuki ; Kanamori, Yoshihiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-696d56d6628d5d77ad34d1415b440029bb73a4babe94a32d770a9cf3774dc7853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Age</topic><topic>Age groups</topic><topic>Artificial Intelligence</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Correlation analysis</topic><topic>Editing</topic><topic>Image manipulation</topic><topic>Image Processing and Computer Vision</topic><topic>Methods</topic><topic>Original Article</topic><topic>Space exploration</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ito, Taishi</creatorcontrib><creatorcontrib>Endo, Yuki</creatorcontrib><creatorcontrib>Kanamori, Yoshihiro</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ito, Taishi</au><au>Endo, Yuki</au><au>Kanamori, Yoshihiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Age-dependent face diversification via latent space analysis</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>39</volume><issue>8</issue><spage>3221</spage><epage>3233</epage><pages>3221-3233</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>Facial age transformation methods can change facial appearance according to the target age. However, most existing methods do not consider that people get older with different attribute changes (e.g., wrinkles, hair volume, and face shape) depending on their circumstances and environment. Diversifying such age-dependent attributes while preserving a person’s identity is crucial to broaden the applications of age transformation. In addition, the accuracy of age transformation to childhood is limited due to dataset bias. To solve these problems, we propose an age transformation method based on latent space analysis of StyleGAN. Our method obtains diverse age-transformed images by randomly manipulating age-dependent attributes in a latent space. To do so, we analyze the latent space and perturb channels affecting age-dependent attributes. We then optimize the perturbed latent code to refine the age and identity of the output image. We also present an unsupervised approach for improving age transformation to childhood. Our approach is based on the assumption that existing methods cannot sufficiently move a latent code toward a desired direction. We extrapolate an estimated latent path and iteratively update the latent code along the extrapolated path until the output image reaches the target age. Quantitative and qualitative comparisons with existing methods show that our method improves output diversity and preserves the target age and identity. We also show that our method can more accurately perform age transformation to childhood.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-023-03000-y</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0008-5374-3998</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-2789
ispartof The Visual computer, 2023-08, Vol.39 (8), p.3221-3233
issn 0178-2789
1432-2315
language eng
recordid cdi_proquest_journals_2917935647
source SpringerLink (Online service); ProQuest Central
subjects Accuracy
Age
Age groups
Artificial Intelligence
Computer Graphics
Computer Science
Correlation analysis
Editing
Image manipulation
Image Processing and Computer Vision
Methods
Original Article
Space exploration
Transformations
title Age-dependent face diversification via latent space analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A57%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Age-dependent%20face%20diversification%20via%20latent%20space%20analysis&rft.jtitle=The%20Visual%20computer&rft.au=Ito,%20Taishi&rft.date=2023-08-01&rft.volume=39&rft.issue=8&rft.spage=3221&rft.epage=3233&rft.pages=3221-3233&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-023-03000-y&rft_dat=%3Cproquest_cross%3E2917935647%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917935647&rft_id=info:pmid/&rfr_iscdi=true