Age-dependent face diversification via latent space analysis
Facial age transformation methods can change facial appearance according to the target age. However, most existing methods do not consider that people get older with different attribute changes (e.g., wrinkles, hair volume, and face shape) depending on their circumstances and environment. Diversifyi...
Gespeichert in:
Veröffentlicht in: | The Visual computer 2023-08, Vol.39 (8), p.3221-3233 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3233 |
---|---|
container_issue | 8 |
container_start_page | 3221 |
container_title | The Visual computer |
container_volume | 39 |
creator | Ito, Taishi Endo, Yuki Kanamori, Yoshihiro |
description | Facial age transformation methods can change facial appearance according to the target age. However, most existing methods do not consider that people get older with different attribute changes (e.g., wrinkles, hair volume, and face shape) depending on their circumstances and environment. Diversifying such
age-dependent attributes
while preserving a person’s identity is crucial to broaden the applications of age transformation. In addition, the accuracy of age transformation to childhood is limited due to dataset bias. To solve these problems, we propose an age transformation method based on latent space analysis of StyleGAN. Our method obtains diverse age-transformed images by randomly manipulating age-dependent attributes in a latent space. To do so, we analyze the latent space and perturb channels affecting age-dependent attributes. We then optimize the perturbed latent code to refine the age and identity of the output image. We also present an unsupervised approach for improving age transformation to childhood. Our approach is based on the assumption that existing methods cannot sufficiently move a latent code toward a desired direction. We extrapolate an estimated latent path and iteratively update the latent code along the extrapolated path until the output image reaches the target age. Quantitative and qualitative comparisons with existing methods show that our method improves output diversity and preserves the target age and identity. We also show that our method can more accurately perform age transformation to childhood. |
doi_str_mv | 10.1007/s00371-023-03000-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917935647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917935647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-696d56d6628d5d77ad34d1415b440029bb73a4babe94a32d770a9cf3774dc7853</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gKeC5-gkkzYNeFkWXYUFL3oOaZMuWWpbk-5C396sFbx5Gob5_p_hI-SWwT0DkA8RACWjwJECAgCdzsiCCeSUI8vPyQKYLCmXpbokVzHuIe1SqAV5XO0ctW5wnXXdmDWmdpn1Rxeib3xtRt932dGbrDXj6R6HE2A6007Rx2ty0Zg2upvfuSQfz0_v6xe6fdu8rldbWiMTIy1UYfPCFgUvbW6lNBaFZYLllRAAXFWVRCMqUzklDPJEgFF1g-lDW8syxyW5m3uH0H8dXBz1vj-E9ETUXDGpMC-ETBSfqTr0MQbX6CH4TxMmzUCfLOnZkk6W9I8lPaUQzqGY4G7nwl_1P6lv8lhp2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917935647</pqid></control><display><type>article</type><title>Age-dependent face diversification via latent space analysis</title><source>SpringerLink (Online service)</source><source>ProQuest Central</source><creator>Ito, Taishi ; Endo, Yuki ; Kanamori, Yoshihiro</creator><creatorcontrib>Ito, Taishi ; Endo, Yuki ; Kanamori, Yoshihiro</creatorcontrib><description>Facial age transformation methods can change facial appearance according to the target age. However, most existing methods do not consider that people get older with different attribute changes (e.g., wrinkles, hair volume, and face shape) depending on their circumstances and environment. Diversifying such
age-dependent attributes
while preserving a person’s identity is crucial to broaden the applications of age transformation. In addition, the accuracy of age transformation to childhood is limited due to dataset bias. To solve these problems, we propose an age transformation method based on latent space analysis of StyleGAN. Our method obtains diverse age-transformed images by randomly manipulating age-dependent attributes in a latent space. To do so, we analyze the latent space and perturb channels affecting age-dependent attributes. We then optimize the perturbed latent code to refine the age and identity of the output image. We also present an unsupervised approach for improving age transformation to childhood. Our approach is based on the assumption that existing methods cannot sufficiently move a latent code toward a desired direction. We extrapolate an estimated latent path and iteratively update the latent code along the extrapolated path until the output image reaches the target age. Quantitative and qualitative comparisons with existing methods show that our method improves output diversity and preserves the target age and identity. We also show that our method can more accurately perform age transformation to childhood.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-023-03000-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Age ; Age groups ; Artificial Intelligence ; Computer Graphics ; Computer Science ; Correlation analysis ; Editing ; Image manipulation ; Image Processing and Computer Vision ; Methods ; Original Article ; Space exploration ; Transformations</subject><ispartof>The Visual computer, 2023-08, Vol.39 (8), p.3221-3233</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-696d56d6628d5d77ad34d1415b440029bb73a4babe94a32d770a9cf3774dc7853</cites><orcidid>0009-0008-5374-3998</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-023-03000-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917935647?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Ito, Taishi</creatorcontrib><creatorcontrib>Endo, Yuki</creatorcontrib><creatorcontrib>Kanamori, Yoshihiro</creatorcontrib><title>Age-dependent face diversification via latent space analysis</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>Facial age transformation methods can change facial appearance according to the target age. However, most existing methods do not consider that people get older with different attribute changes (e.g., wrinkles, hair volume, and face shape) depending on their circumstances and environment. Diversifying such
age-dependent attributes
while preserving a person’s identity is crucial to broaden the applications of age transformation. In addition, the accuracy of age transformation to childhood is limited due to dataset bias. To solve these problems, we propose an age transformation method based on latent space analysis of StyleGAN. Our method obtains diverse age-transformed images by randomly manipulating age-dependent attributes in a latent space. To do so, we analyze the latent space and perturb channels affecting age-dependent attributes. We then optimize the perturbed latent code to refine the age and identity of the output image. We also present an unsupervised approach for improving age transformation to childhood. Our approach is based on the assumption that existing methods cannot sufficiently move a latent code toward a desired direction. We extrapolate an estimated latent path and iteratively update the latent code along the extrapolated path until the output image reaches the target age. Quantitative and qualitative comparisons with existing methods show that our method improves output diversity and preserves the target age and identity. We also show that our method can more accurately perform age transformation to childhood.</description><subject>Accuracy</subject><subject>Age</subject><subject>Age groups</subject><subject>Artificial Intelligence</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Correlation analysis</subject><subject>Editing</subject><subject>Image manipulation</subject><subject>Image Processing and Computer Vision</subject><subject>Methods</subject><subject>Original Article</subject><subject>Space exploration</subject><subject>Transformations</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMFKxDAQhoMouK6-gKeC5-gkkzYNeFkWXYUFL3oOaZMuWWpbk-5C396sFbx5Gob5_p_hI-SWwT0DkA8RACWjwJECAgCdzsiCCeSUI8vPyQKYLCmXpbokVzHuIe1SqAV5XO0ctW5wnXXdmDWmdpn1Rxeib3xtRt932dGbrDXj6R6HE2A6007Rx2ty0Zg2upvfuSQfz0_v6xe6fdu8rldbWiMTIy1UYfPCFgUvbW6lNBaFZYLllRAAXFWVRCMqUzklDPJEgFF1g-lDW8syxyW5m3uH0H8dXBz1vj-E9ETUXDGpMC-ETBSfqTr0MQbX6CH4TxMmzUCfLOnZkk6W9I8lPaUQzqGY4G7nwl_1P6lv8lhp2w</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Ito, Taishi</creator><creator>Endo, Yuki</creator><creator>Kanamori, Yoshihiro</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0009-0008-5374-3998</orcidid></search><sort><creationdate>20230801</creationdate><title>Age-dependent face diversification via latent space analysis</title><author>Ito, Taishi ; Endo, Yuki ; Kanamori, Yoshihiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-696d56d6628d5d77ad34d1415b440029bb73a4babe94a32d770a9cf3774dc7853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Age</topic><topic>Age groups</topic><topic>Artificial Intelligence</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Correlation analysis</topic><topic>Editing</topic><topic>Image manipulation</topic><topic>Image Processing and Computer Vision</topic><topic>Methods</topic><topic>Original Article</topic><topic>Space exploration</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ito, Taishi</creatorcontrib><creatorcontrib>Endo, Yuki</creatorcontrib><creatorcontrib>Kanamori, Yoshihiro</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ito, Taishi</au><au>Endo, Yuki</au><au>Kanamori, Yoshihiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Age-dependent face diversification via latent space analysis</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>39</volume><issue>8</issue><spage>3221</spage><epage>3233</epage><pages>3221-3233</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>Facial age transformation methods can change facial appearance according to the target age. However, most existing methods do not consider that people get older with different attribute changes (e.g., wrinkles, hair volume, and face shape) depending on their circumstances and environment. Diversifying such
age-dependent attributes
while preserving a person’s identity is crucial to broaden the applications of age transformation. In addition, the accuracy of age transformation to childhood is limited due to dataset bias. To solve these problems, we propose an age transformation method based on latent space analysis of StyleGAN. Our method obtains diverse age-transformed images by randomly manipulating age-dependent attributes in a latent space. To do so, we analyze the latent space and perturb channels affecting age-dependent attributes. We then optimize the perturbed latent code to refine the age and identity of the output image. We also present an unsupervised approach for improving age transformation to childhood. Our approach is based on the assumption that existing methods cannot sufficiently move a latent code toward a desired direction. We extrapolate an estimated latent path and iteratively update the latent code along the extrapolated path until the output image reaches the target age. Quantitative and qualitative comparisons with existing methods show that our method improves output diversity and preserves the target age and identity. We also show that our method can more accurately perform age transformation to childhood.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-023-03000-y</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0008-5374-3998</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-2789 |
ispartof | The Visual computer, 2023-08, Vol.39 (8), p.3221-3233 |
issn | 0178-2789 1432-2315 |
language | eng |
recordid | cdi_proquest_journals_2917935647 |
source | SpringerLink (Online service); ProQuest Central |
subjects | Accuracy Age Age groups Artificial Intelligence Computer Graphics Computer Science Correlation analysis Editing Image manipulation Image Processing and Computer Vision Methods Original Article Space exploration Transformations |
title | Age-dependent face diversification via latent space analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A57%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Age-dependent%20face%20diversification%20via%20latent%20space%20analysis&rft.jtitle=The%20Visual%20computer&rft.au=Ito,%20Taishi&rft.date=2023-08-01&rft.volume=39&rft.issue=8&rft.spage=3221&rft.epage=3233&rft.pages=3221-3233&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-023-03000-y&rft_dat=%3Cproquest_cross%3E2917935647%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917935647&rft_id=info:pmid/&rfr_iscdi=true |