Fuzzy conformable fractional differential equations: novel extended approach and new numerical solutions

The aim of this article is to propose a new definition of fuzzy fractional derivative, so-called fuzzy conformable. To this end, we discussed fuzzy conformable fractional integral softly. Meanwhile, uniqueness, existence, and other properties of solutions of certain fuzzy conformable fractional diff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2020-08, Vol.24 (16), p.12501-12522
Hauptverfasser: Arqub, Omar Abu, Al-Smadi, Mohammed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12522
container_issue 16
container_start_page 12501
container_title Soft computing (Berlin, Germany)
container_volume 24
creator Arqub, Omar Abu
Al-Smadi, Mohammed
description The aim of this article is to propose a new definition of fuzzy fractional derivative, so-called fuzzy conformable. To this end, we discussed fuzzy conformable fractional integral softly. Meanwhile, uniqueness, existence, and other properties of solutions of certain fuzzy conformable fractional differential equations under strongly generalized differentiability are also utilized. Furthermore, all needed requirements for characterizing solutions by equivalent systems of crisp conformable fractional differential equations are debated. In this orientation, modern trend and new computational algorithm in terms of analytic and approximate conformable solutions are proposed. Finally, the reproducing kernel Hilbert space method in the conformable emotion is constructed side by side with numerical results, tabulated data, and graphical representations.
doi_str_mv 10.1007/s00500-020-04687-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917934966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917934966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8f5638e9cd1ef9bd0265b5f67baeeef100131ca2fe77ad397facf62dea4a108e3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssQ74kdgJO1RRQKrEBtaWY49pqtRp7QRovx63QWLHYjQP3TOauQhdU3JLCZF3kZCCkIywFLkoZUZO0ITmnGcyl9XpsWaZFDk_RxcxrghhVBZ8gpbzYb_fYdN514W1rlvALmjTN53XLbaNcxDA901qYDvowzzeY999Qhp89-AtWKw3m9Bps8TaW-zhC_thDaExCYpdOxyhS3TmdBvh6jdP0fv88W32nC1en15mD4vMcFr1WekKwUuojKXgqtoSJoq6cELWGgBcepZyajRzIKW2vJJOGyeYBZ1rSkrgU3Qz7k0nbQeIvVp1Q0jPRMUqKiueV0IkFRtVJnQxBnBqE5q1DjtFiTo4qkZHVXJUHR1VJEF8hGIS-w8If6v_oX4Ajox8ZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917934966</pqid></control><display><type>article</type><title>Fuzzy conformable fractional differential equations: novel extended approach and new numerical solutions</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Arqub, Omar Abu ; Al-Smadi, Mohammed</creator><creatorcontrib>Arqub, Omar Abu ; Al-Smadi, Mohammed</creatorcontrib><description>The aim of this article is to propose a new definition of fuzzy fractional derivative, so-called fuzzy conformable. To this end, we discussed fuzzy conformable fractional integral softly. Meanwhile, uniqueness, existence, and other properties of solutions of certain fuzzy conformable fractional differential equations under strongly generalized differentiability are also utilized. Furthermore, all needed requirements for characterizing solutions by equivalent systems of crisp conformable fractional differential equations are debated. In this orientation, modern trend and new computational algorithm in terms of analytic and approximate conformable solutions are proposed. Finally, the reproducing kernel Hilbert space method in the conformable emotion is constructed side by side with numerical results, tabulated data, and graphical representations.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-020-04687-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Calculus ; Computational Intelligence ; Control ; Differential equations ; Engineering ; Fractional calculus ; Fuzzy sets ; Graphical representations ; Hilbert space ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Robotics</subject><ispartof>Soft computing (Berlin, Germany), 2020-08, Vol.24 (16), p.12501-12522</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8f5638e9cd1ef9bd0265b5f67baeeef100131ca2fe77ad397facf62dea4a108e3</citedby><cites>FETCH-LOGICAL-c319t-8f5638e9cd1ef9bd0265b5f67baeeef100131ca2fe77ad397facf62dea4a108e3</cites><orcidid>0000-0001-9526-6095</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-020-04687-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917934966?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72240</link.rule.ids></links><search><creatorcontrib>Arqub, Omar Abu</creatorcontrib><creatorcontrib>Al-Smadi, Mohammed</creatorcontrib><title>Fuzzy conformable fractional differential equations: novel extended approach and new numerical solutions</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>The aim of this article is to propose a new definition of fuzzy fractional derivative, so-called fuzzy conformable. To this end, we discussed fuzzy conformable fractional integral softly. Meanwhile, uniqueness, existence, and other properties of solutions of certain fuzzy conformable fractional differential equations under strongly generalized differentiability are also utilized. Furthermore, all needed requirements for characterizing solutions by equivalent systems of crisp conformable fractional differential equations are debated. In this orientation, modern trend and new computational algorithm in terms of analytic and approximate conformable solutions are proposed. Finally, the reproducing kernel Hilbert space method in the conformable emotion is constructed side by side with numerical results, tabulated data, and graphical representations.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Calculus</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Differential equations</subject><subject>Engineering</subject><subject>Fractional calculus</subject><subject>Fuzzy sets</subject><subject>Graphical representations</subject><subject>Hilbert space</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Robotics</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wssQ74kdgJO1RRQKrEBtaWY49pqtRp7QRovx63QWLHYjQP3TOauQhdU3JLCZF3kZCCkIywFLkoZUZO0ITmnGcyl9XpsWaZFDk_RxcxrghhVBZ8gpbzYb_fYdN514W1rlvALmjTN53XLbaNcxDA901qYDvowzzeY999Qhp89-AtWKw3m9Bps8TaW-zhC_thDaExCYpdOxyhS3TmdBvh6jdP0fv88W32nC1en15mD4vMcFr1WekKwUuojKXgqtoSJoq6cELWGgBcepZyajRzIKW2vJJOGyeYBZ1rSkrgU3Qz7k0nbQeIvVp1Q0jPRMUqKiueV0IkFRtVJnQxBnBqE5q1DjtFiTo4qkZHVXJUHR1VJEF8hGIS-w8If6v_oX4Ajox8ZQ</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Arqub, Omar Abu</creator><creator>Al-Smadi, Mohammed</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-9526-6095</orcidid></search><sort><creationdate>20200801</creationdate><title>Fuzzy conformable fractional differential equations: novel extended approach and new numerical solutions</title><author>Arqub, Omar Abu ; Al-Smadi, Mohammed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8f5638e9cd1ef9bd0265b5f67baeeef100131ca2fe77ad397facf62dea4a108e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Calculus</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Differential equations</topic><topic>Engineering</topic><topic>Fractional calculus</topic><topic>Fuzzy sets</topic><topic>Graphical representations</topic><topic>Hilbert space</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arqub, Omar Abu</creatorcontrib><creatorcontrib>Al-Smadi, Mohammed</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arqub, Omar Abu</au><au>Al-Smadi, Mohammed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy conformable fractional differential equations: novel extended approach and new numerical solutions</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>24</volume><issue>16</issue><spage>12501</spage><epage>12522</epage><pages>12501-12522</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>The aim of this article is to propose a new definition of fuzzy fractional derivative, so-called fuzzy conformable. To this end, we discussed fuzzy conformable fractional integral softly. Meanwhile, uniqueness, existence, and other properties of solutions of certain fuzzy conformable fractional differential equations under strongly generalized differentiability are also utilized. Furthermore, all needed requirements for characterizing solutions by equivalent systems of crisp conformable fractional differential equations are debated. In this orientation, modern trend and new computational algorithm in terms of analytic and approximate conformable solutions are proposed. Finally, the reproducing kernel Hilbert space method in the conformable emotion is constructed side by side with numerical results, tabulated data, and graphical representations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-020-04687-0</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-9526-6095</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2020-08, Vol.24 (16), p.12501-12522
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2917934966
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Artificial Intelligence
Calculus
Computational Intelligence
Control
Differential equations
Engineering
Fractional calculus
Fuzzy sets
Graphical representations
Hilbert space
Mathematical Logic and Foundations
Mechatronics
Methodologies and Application
Robotics
title Fuzzy conformable fractional differential equations: novel extended approach and new numerical solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A38%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20conformable%20fractional%20differential%20equations:%20novel%20extended%20approach%20and%20new%20numerical%20solutions&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Arqub,%20Omar%20Abu&rft.date=2020-08-01&rft.volume=24&rft.issue=16&rft.spage=12501&rft.epage=12522&rft.pages=12501-12522&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-020-04687-0&rft_dat=%3Cproquest_cross%3E2917934966%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917934966&rft_id=info:pmid/&rfr_iscdi=true