Fuzzy conformable fractional differential equations: novel extended approach and new numerical solutions
The aim of this article is to propose a new definition of fuzzy fractional derivative, so-called fuzzy conformable. To this end, we discussed fuzzy conformable fractional integral softly. Meanwhile, uniqueness, existence, and other properties of solutions of certain fuzzy conformable fractional diff...
Gespeichert in:
Veröffentlicht in: | Soft computing (Berlin, Germany) Germany), 2020-08, Vol.24 (16), p.12501-12522 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12522 |
---|---|
container_issue | 16 |
container_start_page | 12501 |
container_title | Soft computing (Berlin, Germany) |
container_volume | 24 |
creator | Arqub, Omar Abu Al-Smadi, Mohammed |
description | The aim of this article is to propose a new definition of fuzzy fractional derivative, so-called fuzzy conformable. To this end, we discussed fuzzy conformable fractional integral softly. Meanwhile, uniqueness, existence, and other properties of solutions of certain fuzzy conformable fractional differential equations under strongly generalized differentiability are also utilized. Furthermore, all needed requirements for characterizing solutions by equivalent systems of crisp conformable fractional differential equations are debated. In this orientation, modern trend and new computational algorithm in terms of analytic and approximate conformable solutions are proposed. Finally, the reproducing kernel Hilbert space method in the conformable emotion is constructed side by side with numerical results, tabulated data, and graphical representations. |
doi_str_mv | 10.1007/s00500-020-04687-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917934966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917934966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8f5638e9cd1ef9bd0265b5f67baeeef100131ca2fe77ad397facf62dea4a108e3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssQ74kdgJO1RRQKrEBtaWY49pqtRp7QRovx63QWLHYjQP3TOauQhdU3JLCZF3kZCCkIywFLkoZUZO0ITmnGcyl9XpsWaZFDk_RxcxrghhVBZ8gpbzYb_fYdN514W1rlvALmjTN53XLbaNcxDA901qYDvowzzeY999Qhp89-AtWKw3m9Bps8TaW-zhC_thDaExCYpdOxyhS3TmdBvh6jdP0fv88W32nC1en15mD4vMcFr1WekKwUuojKXgqtoSJoq6cELWGgBcepZyajRzIKW2vJJOGyeYBZ1rSkrgU3Qz7k0nbQeIvVp1Q0jPRMUqKiueV0IkFRtVJnQxBnBqE5q1DjtFiTo4qkZHVXJUHR1VJEF8hGIS-w8If6v_oX4Ajox8ZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917934966</pqid></control><display><type>article</type><title>Fuzzy conformable fractional differential equations: novel extended approach and new numerical solutions</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Arqub, Omar Abu ; Al-Smadi, Mohammed</creator><creatorcontrib>Arqub, Omar Abu ; Al-Smadi, Mohammed</creatorcontrib><description>The aim of this article is to propose a new definition of fuzzy fractional derivative, so-called fuzzy conformable. To this end, we discussed fuzzy conformable fractional integral softly. Meanwhile, uniqueness, existence, and other properties of solutions of certain fuzzy conformable fractional differential equations under strongly generalized differentiability are also utilized. Furthermore, all needed requirements for characterizing solutions by equivalent systems of crisp conformable fractional differential equations are debated. In this orientation, modern trend and new computational algorithm in terms of analytic and approximate conformable solutions are proposed. Finally, the reproducing kernel Hilbert space method in the conformable emotion is constructed side by side with numerical results, tabulated data, and graphical representations.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-020-04687-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Calculus ; Computational Intelligence ; Control ; Differential equations ; Engineering ; Fractional calculus ; Fuzzy sets ; Graphical representations ; Hilbert space ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Robotics</subject><ispartof>Soft computing (Berlin, Germany), 2020-08, Vol.24 (16), p.12501-12522</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8f5638e9cd1ef9bd0265b5f67baeeef100131ca2fe77ad397facf62dea4a108e3</citedby><cites>FETCH-LOGICAL-c319t-8f5638e9cd1ef9bd0265b5f67baeeef100131ca2fe77ad397facf62dea4a108e3</cites><orcidid>0000-0001-9526-6095</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-020-04687-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917934966?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72240</link.rule.ids></links><search><creatorcontrib>Arqub, Omar Abu</creatorcontrib><creatorcontrib>Al-Smadi, Mohammed</creatorcontrib><title>Fuzzy conformable fractional differential equations: novel extended approach and new numerical solutions</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>The aim of this article is to propose a new definition of fuzzy fractional derivative, so-called fuzzy conformable. To this end, we discussed fuzzy conformable fractional integral softly. Meanwhile, uniqueness, existence, and other properties of solutions of certain fuzzy conformable fractional differential equations under strongly generalized differentiability are also utilized. Furthermore, all needed requirements for characterizing solutions by equivalent systems of crisp conformable fractional differential equations are debated. In this orientation, modern trend and new computational algorithm in terms of analytic and approximate conformable solutions are proposed. Finally, the reproducing kernel Hilbert space method in the conformable emotion is constructed side by side with numerical results, tabulated data, and graphical representations.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Calculus</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Differential equations</subject><subject>Engineering</subject><subject>Fractional calculus</subject><subject>Fuzzy sets</subject><subject>Graphical representations</subject><subject>Hilbert space</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Robotics</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wssQ74kdgJO1RRQKrEBtaWY49pqtRp7QRovx63QWLHYjQP3TOauQhdU3JLCZF3kZCCkIywFLkoZUZO0ITmnGcyl9XpsWaZFDk_RxcxrghhVBZ8gpbzYb_fYdN514W1rlvALmjTN53XLbaNcxDA901qYDvowzzeY999Qhp89-AtWKw3m9Bps8TaW-zhC_thDaExCYpdOxyhS3TmdBvh6jdP0fv88W32nC1en15mD4vMcFr1WekKwUuojKXgqtoSJoq6cELWGgBcepZyajRzIKW2vJJOGyeYBZ1rSkrgU3Qz7k0nbQeIvVp1Q0jPRMUqKiueV0IkFRtVJnQxBnBqE5q1DjtFiTo4qkZHVXJUHR1VJEF8hGIS-w8If6v_oX4Ajox8ZQ</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Arqub, Omar Abu</creator><creator>Al-Smadi, Mohammed</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-9526-6095</orcidid></search><sort><creationdate>20200801</creationdate><title>Fuzzy conformable fractional differential equations: novel extended approach and new numerical solutions</title><author>Arqub, Omar Abu ; Al-Smadi, Mohammed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8f5638e9cd1ef9bd0265b5f67baeeef100131ca2fe77ad397facf62dea4a108e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Calculus</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Differential equations</topic><topic>Engineering</topic><topic>Fractional calculus</topic><topic>Fuzzy sets</topic><topic>Graphical representations</topic><topic>Hilbert space</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arqub, Omar Abu</creatorcontrib><creatorcontrib>Al-Smadi, Mohammed</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arqub, Omar Abu</au><au>Al-Smadi, Mohammed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy conformable fractional differential equations: novel extended approach and new numerical solutions</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>24</volume><issue>16</issue><spage>12501</spage><epage>12522</epage><pages>12501-12522</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>The aim of this article is to propose a new definition of fuzzy fractional derivative, so-called fuzzy conformable. To this end, we discussed fuzzy conformable fractional integral softly. Meanwhile, uniqueness, existence, and other properties of solutions of certain fuzzy conformable fractional differential equations under strongly generalized differentiability are also utilized. Furthermore, all needed requirements for characterizing solutions by equivalent systems of crisp conformable fractional differential equations are debated. In this orientation, modern trend and new computational algorithm in terms of analytic and approximate conformable solutions are proposed. Finally, the reproducing kernel Hilbert space method in the conformable emotion is constructed side by side with numerical results, tabulated data, and graphical representations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-020-04687-0</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-9526-6095</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-7643 |
ispartof | Soft computing (Berlin, Germany), 2020-08, Vol.24 (16), p.12501-12522 |
issn | 1432-7643 1433-7479 |
language | eng |
recordid | cdi_proquest_journals_2917934966 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Algorithms Artificial Intelligence Calculus Computational Intelligence Control Differential equations Engineering Fractional calculus Fuzzy sets Graphical representations Hilbert space Mathematical Logic and Foundations Mechatronics Methodologies and Application Robotics |
title | Fuzzy conformable fractional differential equations: novel extended approach and new numerical solutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A38%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20conformable%20fractional%20differential%20equations:%20novel%20extended%20approach%20and%20new%20numerical%20solutions&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Arqub,%20Omar%20Abu&rft.date=2020-08-01&rft.volume=24&rft.issue=16&rft.spage=12501&rft.epage=12522&rft.pages=12501-12522&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-020-04687-0&rft_dat=%3Cproquest_cross%3E2917934966%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917934966&rft_id=info:pmid/&rfr_iscdi=true |