Through-Hole Microwave Resonators for Magnonic Quantum Transducer

For the realization of the quantum network, the coherent conversion from microwave to optical waves, and vice versa, plays a key role in connecting quantum computation or sensing components over long distances. To this end, one exciting approach is the hybrid system based on the use of the collectiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied magnetic resonance 2023-05, Vol.54 (4-5), p.581-589
Hauptverfasser: Vafadar Yengejeh, Morteza, Rameev, Bulat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 589
container_issue 4-5
container_start_page 581
container_title Applied magnetic resonance
container_volume 54
creator Vafadar Yengejeh, Morteza
Rameev, Bulat
description For the realization of the quantum network, the coherent conversion from microwave to optical waves, and vice versa, plays a key role in connecting quantum computation or sensing components over long distances. To this end, one exciting approach is the hybrid system based on the use of the collective spin excitation (magnon) modes in a yttrium iron garnet (YIG) coupled to both microwave cavity mode and optical cavity mode. This system is actively researched toward increasing efficiency and bandwidth of conversion. There have been studies on the magnon-based hybrid systems in the planar geometry due to the possibility to enhance the coupling in the microwave-magnon subsystem and a need to develop solutions that are easier to implement in practice, especially for operation at low (ultra-low) temperatures. In this work, we propose and demonstrate microwave planar resonators with a thin film of YIG on top of a through-hole feature. The hole in the board of the microwave resonator provides perpendicular passage of the pumping and signal lights, enabling efficient coupling of external optical resonator modes with magnon modes. For this work, we concentrated only on the microwave-magnon subsystem of the proposed quantum hybrid system, although efficient coupling between all three parts (microwave cavity, magnon, and optical cavity) is planned to be realized. We achieve a microwave–magnon coupling strength of 448 MHz with a resonator having a circular hole of 1 mm diameter.
doi_str_mv 10.1007/s00723-023-01542-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917930351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917930351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3b9ce3e29e61d5f2c0cb8d9e488ea8c3bad519ee400c4606a02dc0aca6e11e893</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwApwicTas7SSOj1UFFKkIgcrZcp1Nf9TaxU6gvD2OgsSNw-xevpnVDiHXDG4ZgLyLaXBBoRcrck6PJ2TESiaoLECekhEoIakSuTwnFzFuIVEVkyMyWayD71ZrOvM7zJ43Nvgv84nZG0bvTOtDzBofsmezct5tbPbaGdd2-2wRjIt1ZzFckrPG7CJe_e4xeX-4X0xndP7y-DSdzKkVTLVULJVFgVxhyeqi4RbssqoV5lWFprJiaeqCKcQcwOYllAZ4bcFYUyJjWCkxJjdD7iH4jw5jq7e-Cy6d1FwxqQSIgiWKD1R6JMaAjT6Ezd6Eb81A91XpoSoNvfqq9DGZxGCKCXYrDH_R_7h-AJI2bSI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917930351</pqid></control><display><type>article</type><title>Through-Hole Microwave Resonators for Magnonic Quantum Transducer</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Vafadar Yengejeh, Morteza ; Rameev, Bulat</creator><creatorcontrib>Vafadar Yengejeh, Morteza ; Rameev, Bulat</creatorcontrib><description>For the realization of the quantum network, the coherent conversion from microwave to optical waves, and vice versa, plays a key role in connecting quantum computation or sensing components over long distances. To this end, one exciting approach is the hybrid system based on the use of the collective spin excitation (magnon) modes in a yttrium iron garnet (YIG) coupled to both microwave cavity mode and optical cavity mode. This system is actively researched toward increasing efficiency and bandwidth of conversion. There have been studies on the magnon-based hybrid systems in the planar geometry due to the possibility to enhance the coupling in the microwave-magnon subsystem and a need to develop solutions that are easier to implement in practice, especially for operation at low (ultra-low) temperatures. In this work, we propose and demonstrate microwave planar resonators with a thin film of YIG on top of a through-hole feature. The hole in the board of the microwave resonator provides perpendicular passage of the pumping and signal lights, enabling efficient coupling of external optical resonator modes with magnon modes. For this work, we concentrated only on the microwave-magnon subsystem of the proposed quantum hybrid system, although efficient coupling between all three parts (microwave cavity, magnon, and optical cavity) is planned to be realized. We achieve a microwave–magnon coupling strength of 448 MHz with a resonator having a circular hole of 1 mm diameter.</description><identifier>ISSN: 0937-9347</identifier><identifier>EISSN: 1613-7507</identifier><identifier>DOI: 10.1007/s00723-023-01542-x</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Atoms and Molecules in Strong Fields ; Coupling ; Efficiency ; Electrons ; Geometry ; Hybrid systems ; Laser Matter Interaction ; Magnetic fields ; Magnons ; Optical resonators ; Organic Chemistry ; Original Paper ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum computing ; Solid State Physics ; Spectroscopy/Spectrometry ; Subsystems ; Thin films ; Yttrium-iron garnet</subject><ispartof>Applied magnetic resonance, 2023-05, Vol.54 (4-5), p.581-589</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3b9ce3e29e61d5f2c0cb8d9e488ea8c3bad519ee400c4606a02dc0aca6e11e893</citedby><cites>FETCH-LOGICAL-c319t-3b9ce3e29e61d5f2c0cb8d9e488ea8c3bad519ee400c4606a02dc0aca6e11e893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00723-023-01542-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917930351?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Vafadar Yengejeh, Morteza</creatorcontrib><creatorcontrib>Rameev, Bulat</creatorcontrib><title>Through-Hole Microwave Resonators for Magnonic Quantum Transducer</title><title>Applied magnetic resonance</title><addtitle>Appl Magn Reson</addtitle><description>For the realization of the quantum network, the coherent conversion from microwave to optical waves, and vice versa, plays a key role in connecting quantum computation or sensing components over long distances. To this end, one exciting approach is the hybrid system based on the use of the collective spin excitation (magnon) modes in a yttrium iron garnet (YIG) coupled to both microwave cavity mode and optical cavity mode. This system is actively researched toward increasing efficiency and bandwidth of conversion. There have been studies on the magnon-based hybrid systems in the planar geometry due to the possibility to enhance the coupling in the microwave-magnon subsystem and a need to develop solutions that are easier to implement in practice, especially for operation at low (ultra-low) temperatures. In this work, we propose and demonstrate microwave planar resonators with a thin film of YIG on top of a through-hole feature. The hole in the board of the microwave resonator provides perpendicular passage of the pumping and signal lights, enabling efficient coupling of external optical resonator modes with magnon modes. For this work, we concentrated only on the microwave-magnon subsystem of the proposed quantum hybrid system, although efficient coupling between all three parts (microwave cavity, magnon, and optical cavity) is planned to be realized. We achieve a microwave–magnon coupling strength of 448 MHz with a resonator having a circular hole of 1 mm diameter.</description><subject>Atoms and Molecules in Strong Fields</subject><subject>Coupling</subject><subject>Efficiency</subject><subject>Electrons</subject><subject>Geometry</subject><subject>Hybrid systems</subject><subject>Laser Matter Interaction</subject><subject>Magnetic fields</subject><subject>Magnons</subject><subject>Optical resonators</subject><subject>Organic Chemistry</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum computing</subject><subject>Solid State Physics</subject><subject>Spectroscopy/Spectrometry</subject><subject>Subsystems</subject><subject>Thin films</subject><subject>Yttrium-iron garnet</subject><issn>0937-9347</issn><issn>1613-7507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1OwzAQhC0EEqXwApwicTas7SSOj1UFFKkIgcrZcp1Nf9TaxU6gvD2OgsSNw-xevpnVDiHXDG4ZgLyLaXBBoRcrck6PJ2TESiaoLECekhEoIakSuTwnFzFuIVEVkyMyWayD71ZrOvM7zJ43Nvgv84nZG0bvTOtDzBofsmezct5tbPbaGdd2-2wRjIt1ZzFckrPG7CJe_e4xeX-4X0xndP7y-DSdzKkVTLVULJVFgVxhyeqi4RbssqoV5lWFprJiaeqCKcQcwOYllAZ4bcFYUyJjWCkxJjdD7iH4jw5jq7e-Cy6d1FwxqQSIgiWKD1R6JMaAjT6Ezd6Eb81A91XpoSoNvfqq9DGZxGCKCXYrDH_R_7h-AJI2bSI</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Vafadar Yengejeh, Morteza</creator><creator>Rameev, Bulat</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20230501</creationdate><title>Through-Hole Microwave Resonators for Magnonic Quantum Transducer</title><author>Vafadar Yengejeh, Morteza ; Rameev, Bulat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3b9ce3e29e61d5f2c0cb8d9e488ea8c3bad519ee400c4606a02dc0aca6e11e893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atoms and Molecules in Strong Fields</topic><topic>Coupling</topic><topic>Efficiency</topic><topic>Electrons</topic><topic>Geometry</topic><topic>Hybrid systems</topic><topic>Laser Matter Interaction</topic><topic>Magnetic fields</topic><topic>Magnons</topic><topic>Optical resonators</topic><topic>Organic Chemistry</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum computing</topic><topic>Solid State Physics</topic><topic>Spectroscopy/Spectrometry</topic><topic>Subsystems</topic><topic>Thin films</topic><topic>Yttrium-iron garnet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vafadar Yengejeh, Morteza</creatorcontrib><creatorcontrib>Rameev, Bulat</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Applied magnetic resonance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vafadar Yengejeh, Morteza</au><au>Rameev, Bulat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Through-Hole Microwave Resonators for Magnonic Quantum Transducer</atitle><jtitle>Applied magnetic resonance</jtitle><stitle>Appl Magn Reson</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>54</volume><issue>4-5</issue><spage>581</spage><epage>589</epage><pages>581-589</pages><issn>0937-9347</issn><eissn>1613-7507</eissn><abstract>For the realization of the quantum network, the coherent conversion from microwave to optical waves, and vice versa, plays a key role in connecting quantum computation or sensing components over long distances. To this end, one exciting approach is the hybrid system based on the use of the collective spin excitation (magnon) modes in a yttrium iron garnet (YIG) coupled to both microwave cavity mode and optical cavity mode. This system is actively researched toward increasing efficiency and bandwidth of conversion. There have been studies on the magnon-based hybrid systems in the planar geometry due to the possibility to enhance the coupling in the microwave-magnon subsystem and a need to develop solutions that are easier to implement in practice, especially for operation at low (ultra-low) temperatures. In this work, we propose and demonstrate microwave planar resonators with a thin film of YIG on top of a through-hole feature. The hole in the board of the microwave resonator provides perpendicular passage of the pumping and signal lights, enabling efficient coupling of external optical resonator modes with magnon modes. For this work, we concentrated only on the microwave-magnon subsystem of the proposed quantum hybrid system, although efficient coupling between all three parts (microwave cavity, magnon, and optical cavity) is planned to be realized. We achieve a microwave–magnon coupling strength of 448 MHz with a resonator having a circular hole of 1 mm diameter.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00723-023-01542-x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0937-9347
ispartof Applied magnetic resonance, 2023-05, Vol.54 (4-5), p.581-589
issn 0937-9347
1613-7507
language eng
recordid cdi_proquest_journals_2917930351
source Springer Nature - Complete Springer Journals; ProQuest Central
subjects Atoms and Molecules in Strong Fields
Coupling
Efficiency
Electrons
Geometry
Hybrid systems
Laser Matter Interaction
Magnetic fields
Magnons
Optical resonators
Organic Chemistry
Original Paper
Physical Chemistry
Physics
Physics and Astronomy
Quantum computing
Solid State Physics
Spectroscopy/Spectrometry
Subsystems
Thin films
Yttrium-iron garnet
title Through-Hole Microwave Resonators for Magnonic Quantum Transducer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A39%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Through-Hole%20Microwave%20Resonators%20for%20Magnonic%20Quantum%20Transducer&rft.jtitle=Applied%20magnetic%20resonance&rft.au=Vafadar%20Yengejeh,%20Morteza&rft.date=2023-05-01&rft.volume=54&rft.issue=4-5&rft.spage=581&rft.epage=589&rft.pages=581-589&rft.issn=0937-9347&rft.eissn=1613-7507&rft_id=info:doi/10.1007/s00723-023-01542-x&rft_dat=%3Cproquest_cross%3E2917930351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917930351&rft_id=info:pmid/&rfr_iscdi=true