An adjusted iterative algorithmic approach for maximum likelihood estimation of the pseudo-copula regression: P-MBP
In this study, a pseudo-maximization by parts method is introduced by developing the maximization by parts algorithm for the parameter estimation of pseudo-copula regression models. Sub- and main score equations are obtained from the pairwise log-likelihood function and solved by the proposed iterat...
Gespeichert in:
Veröffentlicht in: | Soft computing (Berlin, Germany) Germany), 2023-08, Vol.27 (16), p.11227-11241 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11241 |
---|---|
container_issue | 16 |
container_start_page | 11227 |
container_title | Soft computing (Berlin, Germany) |
container_volume | 27 |
creator | Erdemir, Övgücan Karadağ |
description | In this study, a pseudo-maximization by parts method is introduced by developing the maximization by parts algorithm for the parameter estimation of pseudo-copula regression models. Sub- and main score equations are obtained from the pairwise log-likelihood function and solved by the proposed iterative algorithm. The pseudo-maximization by parts algorithm is an iterative algorithm to avoid having to calculate the second-order derivative of the full log-likelihood function as maximization by parts algorithm. Instead of the Gaussian copula function in maximization by parts algorithm, the pseudo-Gaussian copula function is included in the new algorithm. The mean square errors of the estimators found by the maximization by parts algorithm and the pseudo-maximization by parts algorithm are compared using real Turkish comprehensive insurance data taken from the Turkish Insurance Information and Monitoring Center for the year 2017, and it is notable that the proposed algorithm provided better results in terms of having lower errors. |
doi_str_mv | 10.1007/s00500-023-08722-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917930038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917930038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-4404f8e5fa6dd035473d623982dc610db805aef444cf83db8ead981216ede4863</originalsourceid><addsrcrecordid>eNp9UMtOwzAQjBBIlMIPcLLE2bB-JHG4lYqXVEQPcLZMvGlSkjrYCYK_x22RuHHaXe3M7OwkyTmDSwaQXwWAFIACFxRUzjlVB8mESSFoLvPicNdzmmdSHCcnIawBOMtTMUnCbEOMXY9hQEuaAb0Zmk8kpl053wx115TE9L13pqxJ5TzpzFfTjR1pm3dsm9o5SzAMTRdpbkNcRYYaSR9wtI6Wrh9bQzyuPIYQ99dkSZ9ulqfJUWXagGe_dZq83t2-zB_o4vn-cT5b0FIwOVApQVYK08pk1oJIZS5sxkWhuC0zBvZNQWqwklKWlRJxRGMLxTjL0KJUmZgmF3vd6P9jjDb12o1-E09qXrC8EABCRRTfo0rvQvBY6d7Hf_y3ZqC34ep9uDqGq3fh6i1J7Ekhgjcr9H_S_7B-ANmrfio</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917930038</pqid></control><display><type>article</type><title>An adjusted iterative algorithmic approach for maximum likelihood estimation of the pseudo-copula regression: P-MBP</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Erdemir, Övgücan Karadağ</creator><creatorcontrib>Erdemir, Övgücan Karadağ</creatorcontrib><description>In this study, a pseudo-maximization by parts method is introduced by developing the maximization by parts algorithm for the parameter estimation of pseudo-copula regression models. Sub- and main score equations are obtained from the pairwise log-likelihood function and solved by the proposed iterative algorithm. The pseudo-maximization by parts algorithm is an iterative algorithm to avoid having to calculate the second-order derivative of the full log-likelihood function as maximization by parts algorithm. Instead of the Gaussian copula function in maximization by parts algorithm, the pseudo-Gaussian copula function is included in the new algorithm. The mean square errors of the estimators found by the maximization by parts algorithm and the pseudo-maximization by parts algorithm are compared using real Turkish comprehensive insurance data taken from the Turkish Insurance Information and Monitoring Center for the year 2017, and it is notable that the proposed algorithm provided better results in terms of having lower errors.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-023-08722-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Computational Intelligence ; Control ; Engineering ; Errors ; Generalized linear models ; Insurance ; Iterative algorithms ; Iterative methods ; Mathematical Logic and Foundations ; Mathematical Methods in Data Science ; Maximization ; Maximum likelihood estimation ; Mechatronics ; Methods ; Normal distribution ; Optimization ; Parameter estimation ; Regression models ; Robotics</subject><ispartof>Soft computing (Berlin, Germany), 2023-08, Vol.27 (16), p.11227-11241</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-4404f8e5fa6dd035473d623982dc610db805aef444cf83db8ead981216ede4863</cites><orcidid>0000-0002-4725-3588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-023-08722-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917930038?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Erdemir, Övgücan Karadağ</creatorcontrib><title>An adjusted iterative algorithmic approach for maximum likelihood estimation of the pseudo-copula regression: P-MBP</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>In this study, a pseudo-maximization by parts method is introduced by developing the maximization by parts algorithm for the parameter estimation of pseudo-copula regression models. Sub- and main score equations are obtained from the pairwise log-likelihood function and solved by the proposed iterative algorithm. The pseudo-maximization by parts algorithm is an iterative algorithm to avoid having to calculate the second-order derivative of the full log-likelihood function as maximization by parts algorithm. Instead of the Gaussian copula function in maximization by parts algorithm, the pseudo-Gaussian copula function is included in the new algorithm. The mean square errors of the estimators found by the maximization by parts algorithm and the pseudo-maximization by parts algorithm are compared using real Turkish comprehensive insurance data taken from the Turkish Insurance Information and Monitoring Center for the year 2017, and it is notable that the proposed algorithm provided better results in terms of having lower errors.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Engineering</subject><subject>Errors</subject><subject>Generalized linear models</subject><subject>Insurance</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematical Methods in Data Science</subject><subject>Maximization</subject><subject>Maximum likelihood estimation</subject><subject>Mechatronics</subject><subject>Methods</subject><subject>Normal distribution</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Regression models</subject><subject>Robotics</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UMtOwzAQjBBIlMIPcLLE2bB-JHG4lYqXVEQPcLZMvGlSkjrYCYK_x22RuHHaXe3M7OwkyTmDSwaQXwWAFIACFxRUzjlVB8mESSFoLvPicNdzmmdSHCcnIawBOMtTMUnCbEOMXY9hQEuaAb0Zmk8kpl053wx115TE9L13pqxJ5TzpzFfTjR1pm3dsm9o5SzAMTRdpbkNcRYYaSR9wtI6Wrh9bQzyuPIYQ99dkSZ9ulqfJUWXagGe_dZq83t2-zB_o4vn-cT5b0FIwOVApQVYK08pk1oJIZS5sxkWhuC0zBvZNQWqwklKWlRJxRGMLxTjL0KJUmZgmF3vd6P9jjDb12o1-E09qXrC8EABCRRTfo0rvQvBY6d7Hf_y3ZqC34ep9uDqGq3fh6i1J7Ekhgjcr9H_S_7B-ANmrfio</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Erdemir, Övgücan Karadağ</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-4725-3588</orcidid></search><sort><creationdate>20230801</creationdate><title>An adjusted iterative algorithmic approach for maximum likelihood estimation of the pseudo-copula regression: P-MBP</title><author>Erdemir, Övgücan Karadağ</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-4404f8e5fa6dd035473d623982dc610db805aef444cf83db8ead981216ede4863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Engineering</topic><topic>Errors</topic><topic>Generalized linear models</topic><topic>Insurance</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematical Methods in Data Science</topic><topic>Maximization</topic><topic>Maximum likelihood estimation</topic><topic>Mechatronics</topic><topic>Methods</topic><topic>Normal distribution</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Regression models</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erdemir, Övgücan Karadağ</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erdemir, Övgücan Karadağ</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An adjusted iterative algorithmic approach for maximum likelihood estimation of the pseudo-copula regression: P-MBP</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>27</volume><issue>16</issue><spage>11227</spage><epage>11241</epage><pages>11227-11241</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>In this study, a pseudo-maximization by parts method is introduced by developing the maximization by parts algorithm for the parameter estimation of pseudo-copula regression models. Sub- and main score equations are obtained from the pairwise log-likelihood function and solved by the proposed iterative algorithm. The pseudo-maximization by parts algorithm is an iterative algorithm to avoid having to calculate the second-order derivative of the full log-likelihood function as maximization by parts algorithm. Instead of the Gaussian copula function in maximization by parts algorithm, the pseudo-Gaussian copula function is included in the new algorithm. The mean square errors of the estimators found by the maximization by parts algorithm and the pseudo-maximization by parts algorithm are compared using real Turkish comprehensive insurance data taken from the Turkish Insurance Information and Monitoring Center for the year 2017, and it is notable that the proposed algorithm provided better results in terms of having lower errors.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-023-08722-8</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4725-3588</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-7643 |
ispartof | Soft computing (Berlin, Germany), 2023-08, Vol.27 (16), p.11227-11241 |
issn | 1432-7643 1433-7479 |
language | eng |
recordid | cdi_proquest_journals_2917930038 |
source | SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Algorithms Artificial Intelligence Computational Intelligence Control Engineering Errors Generalized linear models Insurance Iterative algorithms Iterative methods Mathematical Logic and Foundations Mathematical Methods in Data Science Maximization Maximum likelihood estimation Mechatronics Methods Normal distribution Optimization Parameter estimation Regression models Robotics |
title | An adjusted iterative algorithmic approach for maximum likelihood estimation of the pseudo-copula regression: P-MBP |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A32%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20adjusted%20iterative%20algorithmic%20approach%20for%20maximum%20likelihood%20estimation%20of%20the%20pseudo-copula%20regression:%20P-MBP&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Erdemir,%20%C3%96vg%C3%BCcan%20Karada%C4%9F&rft.date=2023-08-01&rft.volume=27&rft.issue=16&rft.spage=11227&rft.epage=11241&rft.pages=11227-11241&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-023-08722-8&rft_dat=%3Cproquest_cross%3E2917930038%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917930038&rft_id=info:pmid/&rfr_iscdi=true |