An adjusted iterative algorithmic approach for maximum likelihood estimation of the pseudo-copula regression: P-MBP

In this study, a pseudo-maximization by parts method is introduced by developing the maximization by parts algorithm for the parameter estimation of pseudo-copula regression models. Sub- and main score equations are obtained from the pairwise log-likelihood function and solved by the proposed iterat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2023-08, Vol.27 (16), p.11227-11241
1. Verfasser: Erdemir, Övgücan Karadağ
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11241
container_issue 16
container_start_page 11227
container_title Soft computing (Berlin, Germany)
container_volume 27
creator Erdemir, Övgücan Karadağ
description In this study, a pseudo-maximization by parts method is introduced by developing the maximization by parts algorithm for the parameter estimation of pseudo-copula regression models. Sub- and main score equations are obtained from the pairwise log-likelihood function and solved by the proposed iterative algorithm. The pseudo-maximization by parts algorithm is an iterative algorithm to avoid having to calculate the second-order derivative of the full log-likelihood function as maximization by parts algorithm. Instead of the Gaussian copula function in maximization by parts algorithm, the pseudo-Gaussian copula function is included in the new algorithm. The mean square errors of the estimators found by the maximization by parts algorithm and the pseudo-maximization by parts algorithm are compared using real Turkish comprehensive insurance data taken from the Turkish Insurance Information and Monitoring Center for the year 2017, and it is notable that the proposed algorithm provided better results in terms of having lower errors.
doi_str_mv 10.1007/s00500-023-08722-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917930038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917930038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-4404f8e5fa6dd035473d623982dc610db805aef444cf83db8ead981216ede4863</originalsourceid><addsrcrecordid>eNp9UMtOwzAQjBBIlMIPcLLE2bB-JHG4lYqXVEQPcLZMvGlSkjrYCYK_x22RuHHaXe3M7OwkyTmDSwaQXwWAFIACFxRUzjlVB8mESSFoLvPicNdzmmdSHCcnIawBOMtTMUnCbEOMXY9hQEuaAb0Zmk8kpl053wx115TE9L13pqxJ5TzpzFfTjR1pm3dsm9o5SzAMTRdpbkNcRYYaSR9wtI6Wrh9bQzyuPIYQ99dkSZ9ulqfJUWXagGe_dZq83t2-zB_o4vn-cT5b0FIwOVApQVYK08pk1oJIZS5sxkWhuC0zBvZNQWqwklKWlRJxRGMLxTjL0KJUmZgmF3vd6P9jjDb12o1-E09qXrC8EABCRRTfo0rvQvBY6d7Hf_y3ZqC34ep9uDqGq3fh6i1J7Ekhgjcr9H_S_7B-ANmrfio</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917930038</pqid></control><display><type>article</type><title>An adjusted iterative algorithmic approach for maximum likelihood estimation of the pseudo-copula regression: P-MBP</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Erdemir, Övgücan Karadağ</creator><creatorcontrib>Erdemir, Övgücan Karadağ</creatorcontrib><description>In this study, a pseudo-maximization by parts method is introduced by developing the maximization by parts algorithm for the parameter estimation of pseudo-copula regression models. Sub- and main score equations are obtained from the pairwise log-likelihood function and solved by the proposed iterative algorithm. The pseudo-maximization by parts algorithm is an iterative algorithm to avoid having to calculate the second-order derivative of the full log-likelihood function as maximization by parts algorithm. Instead of the Gaussian copula function in maximization by parts algorithm, the pseudo-Gaussian copula function is included in the new algorithm. The mean square errors of the estimators found by the maximization by parts algorithm and the pseudo-maximization by parts algorithm are compared using real Turkish comprehensive insurance data taken from the Turkish Insurance Information and Monitoring Center for the year 2017, and it is notable that the proposed algorithm provided better results in terms of having lower errors.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-023-08722-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Computational Intelligence ; Control ; Engineering ; Errors ; Generalized linear models ; Insurance ; Iterative algorithms ; Iterative methods ; Mathematical Logic and Foundations ; Mathematical Methods in Data Science ; Maximization ; Maximum likelihood estimation ; Mechatronics ; Methods ; Normal distribution ; Optimization ; Parameter estimation ; Regression models ; Robotics</subject><ispartof>Soft computing (Berlin, Germany), 2023-08, Vol.27 (16), p.11227-11241</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-4404f8e5fa6dd035473d623982dc610db805aef444cf83db8ead981216ede4863</cites><orcidid>0000-0002-4725-3588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-023-08722-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917930038?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Erdemir, Övgücan Karadağ</creatorcontrib><title>An adjusted iterative algorithmic approach for maximum likelihood estimation of the pseudo-copula regression: P-MBP</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>In this study, a pseudo-maximization by parts method is introduced by developing the maximization by parts algorithm for the parameter estimation of pseudo-copula regression models. Sub- and main score equations are obtained from the pairwise log-likelihood function and solved by the proposed iterative algorithm. The pseudo-maximization by parts algorithm is an iterative algorithm to avoid having to calculate the second-order derivative of the full log-likelihood function as maximization by parts algorithm. Instead of the Gaussian copula function in maximization by parts algorithm, the pseudo-Gaussian copula function is included in the new algorithm. The mean square errors of the estimators found by the maximization by parts algorithm and the pseudo-maximization by parts algorithm are compared using real Turkish comprehensive insurance data taken from the Turkish Insurance Information and Monitoring Center for the year 2017, and it is notable that the proposed algorithm provided better results in terms of having lower errors.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Engineering</subject><subject>Errors</subject><subject>Generalized linear models</subject><subject>Insurance</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematical Methods in Data Science</subject><subject>Maximization</subject><subject>Maximum likelihood estimation</subject><subject>Mechatronics</subject><subject>Methods</subject><subject>Normal distribution</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Regression models</subject><subject>Robotics</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UMtOwzAQjBBIlMIPcLLE2bB-JHG4lYqXVEQPcLZMvGlSkjrYCYK_x22RuHHaXe3M7OwkyTmDSwaQXwWAFIACFxRUzjlVB8mESSFoLvPicNdzmmdSHCcnIawBOMtTMUnCbEOMXY9hQEuaAb0Zmk8kpl053wx115TE9L13pqxJ5TzpzFfTjR1pm3dsm9o5SzAMTRdpbkNcRYYaSR9wtI6Wrh9bQzyuPIYQ99dkSZ9ulqfJUWXagGe_dZq83t2-zB_o4vn-cT5b0FIwOVApQVYK08pk1oJIZS5sxkWhuC0zBvZNQWqwklKWlRJxRGMLxTjL0KJUmZgmF3vd6P9jjDb12o1-E09qXrC8EABCRRTfo0rvQvBY6d7Hf_y3ZqC34ep9uDqGq3fh6i1J7Ekhgjcr9H_S_7B-ANmrfio</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Erdemir, Övgücan Karadağ</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-4725-3588</orcidid></search><sort><creationdate>20230801</creationdate><title>An adjusted iterative algorithmic approach for maximum likelihood estimation of the pseudo-copula regression: P-MBP</title><author>Erdemir, Övgücan Karadağ</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-4404f8e5fa6dd035473d623982dc610db805aef444cf83db8ead981216ede4863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Engineering</topic><topic>Errors</topic><topic>Generalized linear models</topic><topic>Insurance</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematical Methods in Data Science</topic><topic>Maximization</topic><topic>Maximum likelihood estimation</topic><topic>Mechatronics</topic><topic>Methods</topic><topic>Normal distribution</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Regression models</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erdemir, Övgücan Karadağ</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erdemir, Övgücan Karadağ</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An adjusted iterative algorithmic approach for maximum likelihood estimation of the pseudo-copula regression: P-MBP</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>27</volume><issue>16</issue><spage>11227</spage><epage>11241</epage><pages>11227-11241</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>In this study, a pseudo-maximization by parts method is introduced by developing the maximization by parts algorithm for the parameter estimation of pseudo-copula regression models. Sub- and main score equations are obtained from the pairwise log-likelihood function and solved by the proposed iterative algorithm. The pseudo-maximization by parts algorithm is an iterative algorithm to avoid having to calculate the second-order derivative of the full log-likelihood function as maximization by parts algorithm. Instead of the Gaussian copula function in maximization by parts algorithm, the pseudo-Gaussian copula function is included in the new algorithm. The mean square errors of the estimators found by the maximization by parts algorithm and the pseudo-maximization by parts algorithm are compared using real Turkish comprehensive insurance data taken from the Turkish Insurance Information and Monitoring Center for the year 2017, and it is notable that the proposed algorithm provided better results in terms of having lower errors.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-023-08722-8</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4725-3588</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2023-08, Vol.27 (16), p.11227-11241
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2917930038
source SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Artificial Intelligence
Computational Intelligence
Control
Engineering
Errors
Generalized linear models
Insurance
Iterative algorithms
Iterative methods
Mathematical Logic and Foundations
Mathematical Methods in Data Science
Maximization
Maximum likelihood estimation
Mechatronics
Methods
Normal distribution
Optimization
Parameter estimation
Regression models
Robotics
title An adjusted iterative algorithmic approach for maximum likelihood estimation of the pseudo-copula regression: P-MBP
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A32%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20adjusted%20iterative%20algorithmic%20approach%20for%20maximum%20likelihood%20estimation%20of%20the%20pseudo-copula%20regression:%20P-MBP&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Erdemir,%20%C3%96vg%C3%BCcan%20Karada%C4%9F&rft.date=2023-08-01&rft.volume=27&rft.issue=16&rft.spage=11227&rft.epage=11241&rft.pages=11227-11241&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-023-08722-8&rft_dat=%3Cproquest_cross%3E2917930038%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917930038&rft_id=info:pmid/&rfr_iscdi=true