Design and sensitivity analysis of capacitive MEMS pressure sensor for blood pressure measurement
This paper presents the design and simulation of a MEMS based clamped capacitive pressure sensor for blood pressure measurement. Normally, Blood pressure for human beings varies in the range of 0.1–0.14 MPa. The operating range of this sensor design, modified according to the dimensions, is between...
Gespeichert in:
Veröffentlicht in: | Microsystem technologies : sensors, actuators, systems integration actuators, systems integration, 2020-08, Vol.26 (8), p.2371-2379 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2379 |
---|---|
container_issue | 8 |
container_start_page | 2371 |
container_title | Microsystem technologies : sensors, actuators, systems integration |
container_volume | 26 |
creator | Rao, K. Srinivasa Samyuktha, W. Vardhan, D. Vazad Naidu, B. Girish Kumar, P. Ashok Sravani, K. Girija Guha, Koushik |
description | This paper presents the design and simulation of a MEMS based clamped capacitive pressure sensor for blood pressure measurement. Normally, Blood pressure for human beings varies in the range of 0.1–0.14 MPa. The operating range of this sensor design, modified according to the dimensions, is between 0 and 0.16 MPa. The diaphragm deflects on application of pressure which triggers a change in the capacitance between diaphragm and bottom electrode. The plates are separated by a dielectric medium (
S
i
3
N
4
). The change in capacitance, capacitive sensitivity and diaphragm deflection are observed for every design model to determine its performance. To improve the sensor performance, parameters like separation gap and diaphragm thickness are varied. The length and width of square diaphragm and overlapping area (A) are constant for all the designs. Small deflection theory (
w
max
=
h
/
4
), pull-in voltage phenomena (
w
max
≤
g
/
4
), and thin plate theory (
h
≅
a
/
10
) have been considered while designing the model. With respect to pressure, the simulation of diaphragm deflection is performed in COMSOL Multiphysics and analytical simulation for Change in capacitance and Capacitive sensitivity is performed in MATLAB. |
doi_str_mv | 10.1007/s00542-020-04777-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917929347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917929347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6360488396362152b0d187e265194be502592875f082807281965e776fd1da983</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAc3SSTTbJUWr9Ay0e1HNId7NlS7u7ZrbSfnvTrtCbh2FmmPd7MI-QWw73HEA_IICSgoEABlJrzXZnZMRlJhg3ypyTEViZMw06vyRXiCtIkDXZiPingPWyob4pKYYG677-qft92v16jzXStqKF73xxOAQ6n84_aBcD4jaGI9BGWqVarNu2PF02wR_6JjT9Nbmo_BrDzV8fk6_n6efklc3eX94mjzNWZNz2LM9ykMZkNg2CK7GAkhsdRK64lYugQCgrjFYVGGFAC8NtroLWeVXy0qdfxuRu8O1i-70N2LtVu43pDXTCcm2FzaROKjGoitgixlC5LtYbH_eOgztE6YYoXYrSHaN0uwRlA4RJ3CxDPFn_Q_0Cyyp2dg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917929347</pqid></control><display><type>article</type><title>Design and sensitivity analysis of capacitive MEMS pressure sensor for blood pressure measurement</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Rao, K. Srinivasa ; Samyuktha, W. ; Vardhan, D. Vazad ; Naidu, B. Girish ; Kumar, P. Ashok ; Sravani, K. Girija ; Guha, Koushik</creator><creatorcontrib>Rao, K. Srinivasa ; Samyuktha, W. ; Vardhan, D. Vazad ; Naidu, B. Girish ; Kumar, P. Ashok ; Sravani, K. Girija ; Guha, Koushik</creatorcontrib><description>This paper presents the design and simulation of a MEMS based clamped capacitive pressure sensor for blood pressure measurement. Normally, Blood pressure for human beings varies in the range of 0.1–0.14 MPa. The operating range of this sensor design, modified according to the dimensions, is between 0 and 0.16 MPa. The diaphragm deflects on application of pressure which triggers a change in the capacitance between diaphragm and bottom electrode. The plates are separated by a dielectric medium (
S
i
3
N
4
). The change in capacitance, capacitive sensitivity and diaphragm deflection are observed for every design model to determine its performance. To improve the sensor performance, parameters like separation gap and diaphragm thickness are varied. The length and width of square diaphragm and overlapping area (A) are constant for all the designs. Small deflection theory (
w
max
=
h
/
4
), pull-in voltage phenomena (
w
max
≤
g
/
4
), and thin plate theory (
h
≅
a
/
10
) have been considered while designing the model. With respect to pressure, the simulation of diaphragm deflection is performed in COMSOL Multiphysics and analytical simulation for Change in capacitance and Capacitive sensitivity is performed in MATLAB.</description><identifier>ISSN: 0946-7076</identifier><identifier>EISSN: 1432-1858</identifier><identifier>DOI: 10.1007/s00542-020-04777-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Blood pressure ; Capacitance ; Deflection ; Design ; Electrodes ; Electronics and Microelectronics ; Engineering ; Instrumentation ; Market shares ; Mechanical Engineering ; Nanotechnology ; Plate theory ; Pressure measurement ; Pressure sensors ; Residual stress ; Sensitivity analysis ; Sensors ; Silicon nitride ; Simulation ; Technical Paper ; Thin plates</subject><ispartof>Microsystem technologies : sensors, actuators, systems integration, 2020-08, Vol.26 (8), p.2371-2379</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6360488396362152b0d187e265194be502592875f082807281965e776fd1da983</citedby><cites>FETCH-LOGICAL-c319t-6360488396362152b0d187e265194be502592875f082807281965e776fd1da983</cites><orcidid>0000-0003-1239-5196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00542-020-04777-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917929347?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72340</link.rule.ids></links><search><creatorcontrib>Rao, K. Srinivasa</creatorcontrib><creatorcontrib>Samyuktha, W.</creatorcontrib><creatorcontrib>Vardhan, D. Vazad</creatorcontrib><creatorcontrib>Naidu, B. Girish</creatorcontrib><creatorcontrib>Kumar, P. Ashok</creatorcontrib><creatorcontrib>Sravani, K. Girija</creatorcontrib><creatorcontrib>Guha, Koushik</creatorcontrib><title>Design and sensitivity analysis of capacitive MEMS pressure sensor for blood pressure measurement</title><title>Microsystem technologies : sensors, actuators, systems integration</title><addtitle>Microsyst Technol</addtitle><description>This paper presents the design and simulation of a MEMS based clamped capacitive pressure sensor for blood pressure measurement. Normally, Blood pressure for human beings varies in the range of 0.1–0.14 MPa. The operating range of this sensor design, modified according to the dimensions, is between 0 and 0.16 MPa. The diaphragm deflects on application of pressure which triggers a change in the capacitance between diaphragm and bottom electrode. The plates are separated by a dielectric medium (
S
i
3
N
4
). The change in capacitance, capacitive sensitivity and diaphragm deflection are observed for every design model to determine its performance. To improve the sensor performance, parameters like separation gap and diaphragm thickness are varied. The length and width of square diaphragm and overlapping area (A) are constant for all the designs. Small deflection theory (
w
max
=
h
/
4
), pull-in voltage phenomena (
w
max
≤
g
/
4
), and thin plate theory (
h
≅
a
/
10
) have been considered while designing the model. With respect to pressure, the simulation of diaphragm deflection is performed in COMSOL Multiphysics and analytical simulation for Change in capacitance and Capacitive sensitivity is performed in MATLAB.</description><subject>Blood pressure</subject><subject>Capacitance</subject><subject>Deflection</subject><subject>Design</subject><subject>Electrodes</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Instrumentation</subject><subject>Market shares</subject><subject>Mechanical Engineering</subject><subject>Nanotechnology</subject><subject>Plate theory</subject><subject>Pressure measurement</subject><subject>Pressure sensors</subject><subject>Residual stress</subject><subject>Sensitivity analysis</subject><subject>Sensors</subject><subject>Silicon nitride</subject><subject>Simulation</subject><subject>Technical Paper</subject><subject>Thin plates</subject><issn>0946-7076</issn><issn>1432-1858</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPAc3SSTTbJUWr9Ay0e1HNId7NlS7u7ZrbSfnvTrtCbh2FmmPd7MI-QWw73HEA_IICSgoEABlJrzXZnZMRlJhg3ypyTEViZMw06vyRXiCtIkDXZiPingPWyob4pKYYG677-qft92v16jzXStqKF73xxOAQ6n84_aBcD4jaGI9BGWqVarNu2PF02wR_6JjT9Nbmo_BrDzV8fk6_n6efklc3eX94mjzNWZNz2LM9ykMZkNg2CK7GAkhsdRK64lYugQCgrjFYVGGFAC8NtroLWeVXy0qdfxuRu8O1i-70N2LtVu43pDXTCcm2FzaROKjGoitgixlC5LtYbH_eOgztE6YYoXYrSHaN0uwRlA4RJ3CxDPFn_Q_0Cyyp2dg</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Rao, K. Srinivasa</creator><creator>Samyuktha, W.</creator><creator>Vardhan, D. Vazad</creator><creator>Naidu, B. Girish</creator><creator>Kumar, P. Ashok</creator><creator>Sravani, K. Girija</creator><creator>Guha, Koushik</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-1239-5196</orcidid></search><sort><creationdate>20200801</creationdate><title>Design and sensitivity analysis of capacitive MEMS pressure sensor for blood pressure measurement</title><author>Rao, K. Srinivasa ; Samyuktha, W. ; Vardhan, D. Vazad ; Naidu, B. Girish ; Kumar, P. Ashok ; Sravani, K. Girija ; Guha, Koushik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6360488396362152b0d187e265194be502592875f082807281965e776fd1da983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Blood pressure</topic><topic>Capacitance</topic><topic>Deflection</topic><topic>Design</topic><topic>Electrodes</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Instrumentation</topic><topic>Market shares</topic><topic>Mechanical Engineering</topic><topic>Nanotechnology</topic><topic>Plate theory</topic><topic>Pressure measurement</topic><topic>Pressure sensors</topic><topic>Residual stress</topic><topic>Sensitivity analysis</topic><topic>Sensors</topic><topic>Silicon nitride</topic><topic>Simulation</topic><topic>Technical Paper</topic><topic>Thin plates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rao, K. Srinivasa</creatorcontrib><creatorcontrib>Samyuktha, W.</creatorcontrib><creatorcontrib>Vardhan, D. Vazad</creatorcontrib><creatorcontrib>Naidu, B. Girish</creatorcontrib><creatorcontrib>Kumar, P. Ashok</creatorcontrib><creatorcontrib>Sravani, K. Girija</creatorcontrib><creatorcontrib>Guha, Koushik</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Microsystem technologies : sensors, actuators, systems integration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rao, K. Srinivasa</au><au>Samyuktha, W.</au><au>Vardhan, D. Vazad</au><au>Naidu, B. Girish</au><au>Kumar, P. Ashok</au><au>Sravani, K. Girija</au><au>Guha, Koushik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and sensitivity analysis of capacitive MEMS pressure sensor for blood pressure measurement</atitle><jtitle>Microsystem technologies : sensors, actuators, systems integration</jtitle><stitle>Microsyst Technol</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>26</volume><issue>8</issue><spage>2371</spage><epage>2379</epage><pages>2371-2379</pages><issn>0946-7076</issn><eissn>1432-1858</eissn><abstract>This paper presents the design and simulation of a MEMS based clamped capacitive pressure sensor for blood pressure measurement. Normally, Blood pressure for human beings varies in the range of 0.1–0.14 MPa. The operating range of this sensor design, modified according to the dimensions, is between 0 and 0.16 MPa. The diaphragm deflects on application of pressure which triggers a change in the capacitance between diaphragm and bottom electrode. The plates are separated by a dielectric medium (
S
i
3
N
4
). The change in capacitance, capacitive sensitivity and diaphragm deflection are observed for every design model to determine its performance. To improve the sensor performance, parameters like separation gap and diaphragm thickness are varied. The length and width of square diaphragm and overlapping area (A) are constant for all the designs. Small deflection theory (
w
max
=
h
/
4
), pull-in voltage phenomena (
w
max
≤
g
/
4
), and thin plate theory (
h
≅
a
/
10
) have been considered while designing the model. With respect to pressure, the simulation of diaphragm deflection is performed in COMSOL Multiphysics and analytical simulation for Change in capacitance and Capacitive sensitivity is performed in MATLAB.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00542-020-04777-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1239-5196</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0946-7076 |
ispartof | Microsystem technologies : sensors, actuators, systems integration, 2020-08, Vol.26 (8), p.2371-2379 |
issn | 0946-7076 1432-1858 |
language | eng |
recordid | cdi_proquest_journals_2917929347 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Blood pressure Capacitance Deflection Design Electrodes Electronics and Microelectronics Engineering Instrumentation Market shares Mechanical Engineering Nanotechnology Plate theory Pressure measurement Pressure sensors Residual stress Sensitivity analysis Sensors Silicon nitride Simulation Technical Paper Thin plates |
title | Design and sensitivity analysis of capacitive MEMS pressure sensor for blood pressure measurement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A46%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20sensitivity%20analysis%20of%20capacitive%20MEMS%20pressure%20sensor%20for%20blood%20pressure%20measurement&rft.jtitle=Microsystem%20technologies%20:%20sensors,%20actuators,%20systems%20integration&rft.au=Rao,%20K.%20Srinivasa&rft.date=2020-08-01&rft.volume=26&rft.issue=8&rft.spage=2371&rft.epage=2379&rft.pages=2371-2379&rft.issn=0946-7076&rft.eissn=1432-1858&rft_id=info:doi/10.1007/s00542-020-04777-x&rft_dat=%3Cproquest_cross%3E2917929347%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917929347&rft_id=info:pmid/&rfr_iscdi=true |