An adaptive differential evolution with combined strategy for global numerical optimization

Differential evolution (DE) is a simple yet powerful evolutionary algorithm for numerical optimization. However, the performance of DE significantly relies on its mutation operator and control parameters (scaling factor and crossover rate). In this paper, we propose a novel DE variant by introducing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2020-05, Vol.24 (9), p.6277-6296
Hauptverfasser: Sun, Gaoji, Yang, Bai, Yang, Zuqiao, Xu, Geni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6296
container_issue 9
container_start_page 6277
container_title Soft computing (Berlin, Germany)
container_volume 24
creator Sun, Gaoji
Yang, Bai
Yang, Zuqiao
Xu, Geni
description Differential evolution (DE) is a simple yet powerful evolutionary algorithm for numerical optimization. However, the performance of DE significantly relies on its mutation operator and control parameters (scaling factor and crossover rate). In this paper, we propose a novel DE variant by introducing a series of combined strategies into DE, called CSDE. Specifically, in CSDE, to obtain a proper balance between global exploration ability and local exploitation ability, we adopt two mutation operators with different characteristics to produce the mutant vector, and provide a mechanism based on their own historical success rate to coordinate the two adopted mutation operators. Moreover, we combine a periodic function based on one modulo operation, an individual-independence macro-control function and an individual-dependence function based on individual’s fitness value information to adaptively produce scaling factor and crossover rate. To verify the effectiveness of the proposed CSDE, comparison experiments contained seven other state-of-the-art DE variants are tested on a suite of 30 benchmark functions and four real-world problems. The simulation results demonstrate that CSDE achieves the best overall performance among the eight DE variants.
doi_str_mv 10.1007/s00500-019-03934-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917929335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917929335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ced6004fe9689ff8a6f407e9f695fda59006d62a2676148b9134aec0ed72e5933</originalsourceid><addsrcrecordid>eNp9kD1PwzAURSMEEqXwB5gsMRue48Sux6riS6rEAhOD5SbPxVUSF9spKr-etEFiY3p3OPc86WbZNYNbBiDvIkAJQIEpClzxgvKTbMIKzqkspDo95pxKUfDz7CLGDUDOZMkn2fu8I6Y22-R2SGpnLQbskjMNwZ1v-uR8R75c-iCVb1euw5rEFEzC9Z5YH8i68auB7foWg6uG5AdT677NoXiZnVnTRLz6vdPs7eH-dfFEly-Pz4v5klacqUQrrAVAYVGJmbJ2ZoQtQKKyQpW2NqUCELXITS6kYMVspRgvDFaAtcyxVJxPs5vRuw3-s8eY9Mb3oRte6lwxqfKBKQcqH6kq-BgDWr0NrjVhrxnow4h6HFEPI-rjiPqg5mMpDnC3xvCn_qf1Ax0Ldf4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917929335</pqid></control><display><type>article</type><title>An adaptive differential evolution with combined strategy for global numerical optimization</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Sun, Gaoji ; Yang, Bai ; Yang, Zuqiao ; Xu, Geni</creator><creatorcontrib>Sun, Gaoji ; Yang, Bai ; Yang, Zuqiao ; Xu, Geni</creatorcontrib><description>Differential evolution (DE) is a simple yet powerful evolutionary algorithm for numerical optimization. However, the performance of DE significantly relies on its mutation operator and control parameters (scaling factor and crossover rate). In this paper, we propose a novel DE variant by introducing a series of combined strategies into DE, called CSDE. Specifically, in CSDE, to obtain a proper balance between global exploration ability and local exploitation ability, we adopt two mutation operators with different characteristics to produce the mutant vector, and provide a mechanism based on their own historical success rate to coordinate the two adopted mutation operators. Moreover, we combine a periodic function based on one modulo operation, an individual-independence macro-control function and an individual-dependence function based on individual’s fitness value information to adaptively produce scaling factor and crossover rate. To verify the effectiveness of the proposed CSDE, comparison experiments contained seven other state-of-the-art DE variants are tested on a suite of 30 benchmark functions and four real-world problems. The simulation results demonstrate that CSDE achieves the best overall performance among the eight DE variants.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-019-03934-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Computational Intelligence ; Control ; Crossovers ; Engineering ; Evolutionary algorithms ; Evolutionary computation ; Focus ; Genetic algorithms ; Mathematical Logic and Foundations ; Mechatronics ; Mutation ; Operators (mathematics) ; Optimization ; Periodic functions ; Robotics ; Scaling factors</subject><ispartof>Soft computing (Berlin, Germany), 2020-05, Vol.24 (9), p.6277-6296</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ced6004fe9689ff8a6f407e9f695fda59006d62a2676148b9134aec0ed72e5933</citedby><cites>FETCH-LOGICAL-c319t-ced6004fe9689ff8a6f407e9f695fda59006d62a2676148b9134aec0ed72e5933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-019-03934-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917929335?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Sun, Gaoji</creatorcontrib><creatorcontrib>Yang, Bai</creatorcontrib><creatorcontrib>Yang, Zuqiao</creatorcontrib><creatorcontrib>Xu, Geni</creatorcontrib><title>An adaptive differential evolution with combined strategy for global numerical optimization</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>Differential evolution (DE) is a simple yet powerful evolutionary algorithm for numerical optimization. However, the performance of DE significantly relies on its mutation operator and control parameters (scaling factor and crossover rate). In this paper, we propose a novel DE variant by introducing a series of combined strategies into DE, called CSDE. Specifically, in CSDE, to obtain a proper balance between global exploration ability and local exploitation ability, we adopt two mutation operators with different characteristics to produce the mutant vector, and provide a mechanism based on their own historical success rate to coordinate the two adopted mutation operators. Moreover, we combine a periodic function based on one modulo operation, an individual-independence macro-control function and an individual-dependence function based on individual’s fitness value information to adaptively produce scaling factor and crossover rate. To verify the effectiveness of the proposed CSDE, comparison experiments contained seven other state-of-the-art DE variants are tested on a suite of 30 benchmark functions and four real-world problems. The simulation results demonstrate that CSDE achieves the best overall performance among the eight DE variants.</description><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Crossovers</subject><subject>Engineering</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Focus</subject><subject>Genetic algorithms</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Mutation</subject><subject>Operators (mathematics)</subject><subject>Optimization</subject><subject>Periodic functions</subject><subject>Robotics</subject><subject>Scaling factors</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kD1PwzAURSMEEqXwB5gsMRue48Sux6riS6rEAhOD5SbPxVUSF9spKr-etEFiY3p3OPc86WbZNYNbBiDvIkAJQIEpClzxgvKTbMIKzqkspDo95pxKUfDz7CLGDUDOZMkn2fu8I6Y22-R2SGpnLQbskjMNwZ1v-uR8R75c-iCVb1euw5rEFEzC9Z5YH8i68auB7foWg6uG5AdT677NoXiZnVnTRLz6vdPs7eH-dfFEly-Pz4v5klacqUQrrAVAYVGJmbJ2ZoQtQKKyQpW2NqUCELXITS6kYMVspRgvDFaAtcyxVJxPs5vRuw3-s8eY9Mb3oRte6lwxqfKBKQcqH6kq-BgDWr0NrjVhrxnow4h6HFEPI-rjiPqg5mMpDnC3xvCn_qf1Ax0Ldf4</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Sun, Gaoji</creator><creator>Yang, Bai</creator><creator>Yang, Zuqiao</creator><creator>Xu, Geni</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20200501</creationdate><title>An adaptive differential evolution with combined strategy for global numerical optimization</title><author>Sun, Gaoji ; Yang, Bai ; Yang, Zuqiao ; Xu, Geni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ced6004fe9689ff8a6f407e9f695fda59006d62a2676148b9134aec0ed72e5933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Crossovers</topic><topic>Engineering</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Focus</topic><topic>Genetic algorithms</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Mutation</topic><topic>Operators (mathematics)</topic><topic>Optimization</topic><topic>Periodic functions</topic><topic>Robotics</topic><topic>Scaling factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Gaoji</creatorcontrib><creatorcontrib>Yang, Bai</creatorcontrib><creatorcontrib>Yang, Zuqiao</creatorcontrib><creatorcontrib>Xu, Geni</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Gaoji</au><au>Yang, Bai</au><au>Yang, Zuqiao</au><au>Xu, Geni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An adaptive differential evolution with combined strategy for global numerical optimization</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>24</volume><issue>9</issue><spage>6277</spage><epage>6296</epage><pages>6277-6296</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>Differential evolution (DE) is a simple yet powerful evolutionary algorithm for numerical optimization. However, the performance of DE significantly relies on its mutation operator and control parameters (scaling factor and crossover rate). In this paper, we propose a novel DE variant by introducing a series of combined strategies into DE, called CSDE. Specifically, in CSDE, to obtain a proper balance between global exploration ability and local exploitation ability, we adopt two mutation operators with different characteristics to produce the mutant vector, and provide a mechanism based on their own historical success rate to coordinate the two adopted mutation operators. Moreover, we combine a periodic function based on one modulo operation, an individual-independence macro-control function and an individual-dependence function based on individual’s fitness value information to adaptively produce scaling factor and crossover rate. To verify the effectiveness of the proposed CSDE, comparison experiments contained seven other state-of-the-art DE variants are tested on a suite of 30 benchmark functions and four real-world problems. The simulation results demonstrate that CSDE achieves the best overall performance among the eight DE variants.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-019-03934-3</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2020-05, Vol.24 (9), p.6277-6296
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2917929335
source Springer Nature - Complete Springer Journals; ProQuest Central
subjects Artificial Intelligence
Computational Intelligence
Control
Crossovers
Engineering
Evolutionary algorithms
Evolutionary computation
Focus
Genetic algorithms
Mathematical Logic and Foundations
Mechatronics
Mutation
Operators (mathematics)
Optimization
Periodic functions
Robotics
Scaling factors
title An adaptive differential evolution with combined strategy for global numerical optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A51%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20adaptive%20differential%20evolution%20with%20combined%20strategy%20for%20global%20numerical%20optimization&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Sun,%20Gaoji&rft.date=2020-05-01&rft.volume=24&rft.issue=9&rft.spage=6277&rft.epage=6296&rft.pages=6277-6296&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-019-03934-3&rft_dat=%3Cproquest_cross%3E2917929335%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917929335&rft_id=info:pmid/&rfr_iscdi=true