An adaptive differential evolution with combined strategy for global numerical optimization
Differential evolution (DE) is a simple yet powerful evolutionary algorithm for numerical optimization. However, the performance of DE significantly relies on its mutation operator and control parameters (scaling factor and crossover rate). In this paper, we propose a novel DE variant by introducing...
Gespeichert in:
Veröffentlicht in: | Soft computing (Berlin, Germany) Germany), 2020-05, Vol.24 (9), p.6277-6296 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6296 |
---|---|
container_issue | 9 |
container_start_page | 6277 |
container_title | Soft computing (Berlin, Germany) |
container_volume | 24 |
creator | Sun, Gaoji Yang, Bai Yang, Zuqiao Xu, Geni |
description | Differential evolution (DE) is a simple yet powerful evolutionary algorithm for numerical optimization. However, the performance of DE significantly relies on its mutation operator and control parameters (scaling factor and crossover rate). In this paper, we propose a novel DE variant by introducing a series of combined strategies into DE, called CSDE. Specifically, in CSDE, to obtain a proper balance between global exploration ability and local exploitation ability, we adopt two mutation operators with different characteristics to produce the mutant vector, and provide a mechanism based on their own historical success rate to coordinate the two adopted mutation operators. Moreover, we combine a periodic function based on one modulo operation, an individual-independence macro-control function and an individual-dependence function based on individual’s fitness value information to adaptively produce scaling factor and crossover rate. To verify the effectiveness of the proposed CSDE, comparison experiments contained seven other state-of-the-art DE variants are tested on a suite of 30 benchmark functions and four real-world problems. The simulation results demonstrate that CSDE achieves the best overall performance among the eight DE variants. |
doi_str_mv | 10.1007/s00500-019-03934-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917929335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917929335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ced6004fe9689ff8a6f407e9f695fda59006d62a2676148b9134aec0ed72e5933</originalsourceid><addsrcrecordid>eNp9kD1PwzAURSMEEqXwB5gsMRue48Sux6riS6rEAhOD5SbPxVUSF9spKr-etEFiY3p3OPc86WbZNYNbBiDvIkAJQIEpClzxgvKTbMIKzqkspDo95pxKUfDz7CLGDUDOZMkn2fu8I6Y22-R2SGpnLQbskjMNwZ1v-uR8R75c-iCVb1euw5rEFEzC9Z5YH8i68auB7foWg6uG5AdT677NoXiZnVnTRLz6vdPs7eH-dfFEly-Pz4v5klacqUQrrAVAYVGJmbJ2ZoQtQKKyQpW2NqUCELXITS6kYMVspRgvDFaAtcyxVJxPs5vRuw3-s8eY9Mb3oRte6lwxqfKBKQcqH6kq-BgDWr0NrjVhrxnow4h6HFEPI-rjiPqg5mMpDnC3xvCn_qf1Ax0Ldf4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917929335</pqid></control><display><type>article</type><title>An adaptive differential evolution with combined strategy for global numerical optimization</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Sun, Gaoji ; Yang, Bai ; Yang, Zuqiao ; Xu, Geni</creator><creatorcontrib>Sun, Gaoji ; Yang, Bai ; Yang, Zuqiao ; Xu, Geni</creatorcontrib><description>Differential evolution (DE) is a simple yet powerful evolutionary algorithm for numerical optimization. However, the performance of DE significantly relies on its mutation operator and control parameters (scaling factor and crossover rate). In this paper, we propose a novel DE variant by introducing a series of combined strategies into DE, called CSDE. Specifically, in CSDE, to obtain a proper balance between global exploration ability and local exploitation ability, we adopt two mutation operators with different characteristics to produce the mutant vector, and provide a mechanism based on their own historical success rate to coordinate the two adopted mutation operators. Moreover, we combine a periodic function based on one modulo operation, an individual-independence macro-control function and an individual-dependence function based on individual’s fitness value information to adaptively produce scaling factor and crossover rate. To verify the effectiveness of the proposed CSDE, comparison experiments contained seven other state-of-the-art DE variants are tested on a suite of 30 benchmark functions and four real-world problems. The simulation results demonstrate that CSDE achieves the best overall performance among the eight DE variants.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-019-03934-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Computational Intelligence ; Control ; Crossovers ; Engineering ; Evolutionary algorithms ; Evolutionary computation ; Focus ; Genetic algorithms ; Mathematical Logic and Foundations ; Mechatronics ; Mutation ; Operators (mathematics) ; Optimization ; Periodic functions ; Robotics ; Scaling factors</subject><ispartof>Soft computing (Berlin, Germany), 2020-05, Vol.24 (9), p.6277-6296</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ced6004fe9689ff8a6f407e9f695fda59006d62a2676148b9134aec0ed72e5933</citedby><cites>FETCH-LOGICAL-c319t-ced6004fe9689ff8a6f407e9f695fda59006d62a2676148b9134aec0ed72e5933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-019-03934-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917929335?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Sun, Gaoji</creatorcontrib><creatorcontrib>Yang, Bai</creatorcontrib><creatorcontrib>Yang, Zuqiao</creatorcontrib><creatorcontrib>Xu, Geni</creatorcontrib><title>An adaptive differential evolution with combined strategy for global numerical optimization</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>Differential evolution (DE) is a simple yet powerful evolutionary algorithm for numerical optimization. However, the performance of DE significantly relies on its mutation operator and control parameters (scaling factor and crossover rate). In this paper, we propose a novel DE variant by introducing a series of combined strategies into DE, called CSDE. Specifically, in CSDE, to obtain a proper balance between global exploration ability and local exploitation ability, we adopt two mutation operators with different characteristics to produce the mutant vector, and provide a mechanism based on their own historical success rate to coordinate the two adopted mutation operators. Moreover, we combine a periodic function based on one modulo operation, an individual-independence macro-control function and an individual-dependence function based on individual’s fitness value information to adaptively produce scaling factor and crossover rate. To verify the effectiveness of the proposed CSDE, comparison experiments contained seven other state-of-the-art DE variants are tested on a suite of 30 benchmark functions and four real-world problems. The simulation results demonstrate that CSDE achieves the best overall performance among the eight DE variants.</description><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Crossovers</subject><subject>Engineering</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Focus</subject><subject>Genetic algorithms</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Mutation</subject><subject>Operators (mathematics)</subject><subject>Optimization</subject><subject>Periodic functions</subject><subject>Robotics</subject><subject>Scaling factors</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kD1PwzAURSMEEqXwB5gsMRue48Sux6riS6rEAhOD5SbPxVUSF9spKr-etEFiY3p3OPc86WbZNYNbBiDvIkAJQIEpClzxgvKTbMIKzqkspDo95pxKUfDz7CLGDUDOZMkn2fu8I6Y22-R2SGpnLQbskjMNwZ1v-uR8R75c-iCVb1euw5rEFEzC9Z5YH8i68auB7foWg6uG5AdT677NoXiZnVnTRLz6vdPs7eH-dfFEly-Pz4v5klacqUQrrAVAYVGJmbJ2ZoQtQKKyQpW2NqUCELXITS6kYMVspRgvDFaAtcyxVJxPs5vRuw3-s8eY9Mb3oRte6lwxqfKBKQcqH6kq-BgDWr0NrjVhrxnow4h6HFEPI-rjiPqg5mMpDnC3xvCn_qf1Ax0Ldf4</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Sun, Gaoji</creator><creator>Yang, Bai</creator><creator>Yang, Zuqiao</creator><creator>Xu, Geni</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20200501</creationdate><title>An adaptive differential evolution with combined strategy for global numerical optimization</title><author>Sun, Gaoji ; Yang, Bai ; Yang, Zuqiao ; Xu, Geni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ced6004fe9689ff8a6f407e9f695fda59006d62a2676148b9134aec0ed72e5933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Crossovers</topic><topic>Engineering</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Focus</topic><topic>Genetic algorithms</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Mutation</topic><topic>Operators (mathematics)</topic><topic>Optimization</topic><topic>Periodic functions</topic><topic>Robotics</topic><topic>Scaling factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Gaoji</creatorcontrib><creatorcontrib>Yang, Bai</creatorcontrib><creatorcontrib>Yang, Zuqiao</creatorcontrib><creatorcontrib>Xu, Geni</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Gaoji</au><au>Yang, Bai</au><au>Yang, Zuqiao</au><au>Xu, Geni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An adaptive differential evolution with combined strategy for global numerical optimization</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>24</volume><issue>9</issue><spage>6277</spage><epage>6296</epage><pages>6277-6296</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>Differential evolution (DE) is a simple yet powerful evolutionary algorithm for numerical optimization. However, the performance of DE significantly relies on its mutation operator and control parameters (scaling factor and crossover rate). In this paper, we propose a novel DE variant by introducing a series of combined strategies into DE, called CSDE. Specifically, in CSDE, to obtain a proper balance between global exploration ability and local exploitation ability, we adopt two mutation operators with different characteristics to produce the mutant vector, and provide a mechanism based on their own historical success rate to coordinate the two adopted mutation operators. Moreover, we combine a periodic function based on one modulo operation, an individual-independence macro-control function and an individual-dependence function based on individual’s fitness value information to adaptively produce scaling factor and crossover rate. To verify the effectiveness of the proposed CSDE, comparison experiments contained seven other state-of-the-art DE variants are tested on a suite of 30 benchmark functions and four real-world problems. The simulation results demonstrate that CSDE achieves the best overall performance among the eight DE variants.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-019-03934-3</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-7643 |
ispartof | Soft computing (Berlin, Germany), 2020-05, Vol.24 (9), p.6277-6296 |
issn | 1432-7643 1433-7479 |
language | eng |
recordid | cdi_proquest_journals_2917929335 |
source | Springer Nature - Complete Springer Journals; ProQuest Central |
subjects | Artificial Intelligence Computational Intelligence Control Crossovers Engineering Evolutionary algorithms Evolutionary computation Focus Genetic algorithms Mathematical Logic and Foundations Mechatronics Mutation Operators (mathematics) Optimization Periodic functions Robotics Scaling factors |
title | An adaptive differential evolution with combined strategy for global numerical optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A51%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20adaptive%20differential%20evolution%20with%20combined%20strategy%20for%20global%20numerical%20optimization&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Sun,%20Gaoji&rft.date=2020-05-01&rft.volume=24&rft.issue=9&rft.spage=6277&rft.epage=6296&rft.pages=6277-6296&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-019-03934-3&rft_dat=%3Cproquest_cross%3E2917929335%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917929335&rft_id=info:pmid/&rfr_iscdi=true |