Using Bayes methods and mixture models in inter-laboratory studies with outliers

Inter-laboratory studies (especially so-called key comparisons) are conducted to evaluate both national and international equivalence of measurement. In these studies, a reference value of some measurand (the quantity intended to be measured) is developed and results for all laboratories are compare...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Accreditation and quality assurance 2010-07, Vol.15 (7), p.379-389
Hauptverfasser: Page, Garritt L., Vardeman, Stephen B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 389
container_issue 7
container_start_page 379
container_title Accreditation and quality assurance
container_volume 15
creator Page, Garritt L.
Vardeman, Stephen B.
description Inter-laboratory studies (especially so-called key comparisons) are conducted to evaluate both national and international equivalence of measurement. In these studies, a reference value of some measurand (the quantity intended to be measured) is developed and results for all laboratories are compared to this single value. How to determine the reference value is not completely obvious if there are observations and/or laboratories that could be considered outliers. Since ignoring results from one or more participating laboratories is untenable in practical terms, developing methods that are robust to the possibility that a small fraction of the laboratories produces observations unlike those from the others is critical. This paper outlines two Bayesian methods of analyzing inter-laboratory data that have been proposed in the literature and suggests three modifications of one that are more robust to outliers. A simulation study is conducted to compare the five methods.
doi_str_mv 10.1007/s00769-010-0652-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917923704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917923704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-9bb66bf88e2f0f3dbe2dc63ea6157936b38ce508bcf6fade6e52675a2b2a2ad63</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF1AXEbzmCQzSy2-QNCFXYdkkrRT5lGTDNp_b8oUXQmXexf3nHMvHwCXBN8QjOVtzE1UCBOMsOAU0SMwIwWjCHMij8EMV0WFiJT8FJzFuMGY8JKwGXhfxqZfwXu9cxF2Lq0HG6HuLeya7zQGB7vBujbCps-VXECtNkPQaQg7GNNom2z7atIaDmNqGxfiOTjxuo3u4jDnYPn48LF4Rq9vTy-Lu1dUs0IkVBkjhPFl6ajHnlnjqK0Fc1oQLismDCtrx3Fpai-8tk44ToXkmhqqqbaCzcHVlLsNw-foYlKbYQx9PqloRWRFmcRFVpFJVYchxuC82oam02GnCFZ7cGoCpzI4tQenaPZcH5J1rHXrg-7rJv4aKcOSlLzKOjrpYl71Kxf-Pvg__Ac7CX61</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917923704</pqid></control><display><type>article</type><title>Using Bayes methods and mixture models in inter-laboratory studies with outliers</title><source>ProQuest Central (Alumni Edition)</source><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Page, Garritt L. ; Vardeman, Stephen B.</creator><creatorcontrib>Page, Garritt L. ; Vardeman, Stephen B.</creatorcontrib><description>Inter-laboratory studies (especially so-called key comparisons) are conducted to evaluate both national and international equivalence of measurement. In these studies, a reference value of some measurand (the quantity intended to be measured) is developed and results for all laboratories are compared to this single value. How to determine the reference value is not completely obvious if there are observations and/or laboratories that could be considered outliers. Since ignoring results from one or more participating laboratories is untenable in practical terms, developing methods that are robust to the possibility that a small fraction of the laboratories produces observations unlike those from the others is critical. This paper outlines two Bayesian methods of analyzing inter-laboratory data that have been proposed in the literature and suggests three modifications of one that are more robust to outliers. A simulation study is conducted to compare the five methods.</description><identifier>ISSN: 0949-1775</identifier><identifier>EISSN: 1432-0517</identifier><identifier>DOI: 10.1007/s00769-010-0652-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analytical Chemistry ; Bayesian analysis ; Biochemistry ; Chemistry ; Chemistry and Materials Science ; Commercial Law ; Ecotoxicology ; Exact sciences and technology ; Food Science ; General Paper ; Laboratories ; Marketing ; Outliers (statistics) ; Robustness ; Sample variance</subject><ispartof>Accreditation and quality assurance, 2010-07, Vol.15 (7), p.379-389</ispartof><rights>Springer-Verlag 2010</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag 2010.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-9bb66bf88e2f0f3dbe2dc63ea6157936b38ce508bcf6fade6e52675a2b2a2ad63</citedby><cites>FETCH-LOGICAL-c346t-9bb66bf88e2f0f3dbe2dc63ea6157936b38ce508bcf6fade6e52675a2b2a2ad63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00769-010-0652-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917923704?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,778,782,21377,21378,27913,27914,33519,33733,41477,42546,43648,43794,51308,64372,64376,72228</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23071859$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Page, Garritt L.</creatorcontrib><creatorcontrib>Vardeman, Stephen B.</creatorcontrib><title>Using Bayes methods and mixture models in inter-laboratory studies with outliers</title><title>Accreditation and quality assurance</title><addtitle>Accred Qual Assur</addtitle><description>Inter-laboratory studies (especially so-called key comparisons) are conducted to evaluate both national and international equivalence of measurement. In these studies, a reference value of some measurand (the quantity intended to be measured) is developed and results for all laboratories are compared to this single value. How to determine the reference value is not completely obvious if there are observations and/or laboratories that could be considered outliers. Since ignoring results from one or more participating laboratories is untenable in practical terms, developing methods that are robust to the possibility that a small fraction of the laboratories produces observations unlike those from the others is critical. This paper outlines two Bayesian methods of analyzing inter-laboratory data that have been proposed in the literature and suggests three modifications of one that are more robust to outliers. A simulation study is conducted to compare the five methods.</description><subject>Analytical Chemistry</subject><subject>Bayesian analysis</subject><subject>Biochemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Commercial Law</subject><subject>Ecotoxicology</subject><subject>Exact sciences and technology</subject><subject>Food Science</subject><subject>General Paper</subject><subject>Laboratories</subject><subject>Marketing</subject><subject>Outliers (statistics)</subject><subject>Robustness</subject><subject>Sample variance</subject><issn>0949-1775</issn><issn>1432-0517</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wF1AXEbzmCQzSy2-QNCFXYdkkrRT5lGTDNp_b8oUXQmXexf3nHMvHwCXBN8QjOVtzE1UCBOMsOAU0SMwIwWjCHMij8EMV0WFiJT8FJzFuMGY8JKwGXhfxqZfwXu9cxF2Lq0HG6HuLeya7zQGB7vBujbCps-VXECtNkPQaQg7GNNom2z7atIaDmNqGxfiOTjxuo3u4jDnYPn48LF4Rq9vTy-Lu1dUs0IkVBkjhPFl6ajHnlnjqK0Fc1oQLismDCtrx3Fpai-8tk44ToXkmhqqqbaCzcHVlLsNw-foYlKbYQx9PqloRWRFmcRFVpFJVYchxuC82oam02GnCFZ7cGoCpzI4tQenaPZcH5J1rHXrg-7rJv4aKcOSlLzKOjrpYl71Kxf-Pvg__Ac7CX61</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Page, Garritt L.</creator><creator>Vardeman, Stephen B.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88C</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>M0T</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20100701</creationdate><title>Using Bayes methods and mixture models in inter-laboratory studies with outliers</title><author>Page, Garritt L. ; Vardeman, Stephen B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-9bb66bf88e2f0f3dbe2dc63ea6157936b38ce508bcf6fade6e52675a2b2a2ad63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analytical Chemistry</topic><topic>Bayesian analysis</topic><topic>Biochemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Commercial Law</topic><topic>Ecotoxicology</topic><topic>Exact sciences and technology</topic><topic>Food Science</topic><topic>General Paper</topic><topic>Laboratories</topic><topic>Marketing</topic><topic>Outliers (statistics)</topic><topic>Robustness</topic><topic>Sample variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Page, Garritt L.</creatorcontrib><creatorcontrib>Vardeman, Stephen B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Healthcare Administration Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Accreditation and quality assurance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Page, Garritt L.</au><au>Vardeman, Stephen B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Bayes methods and mixture models in inter-laboratory studies with outliers</atitle><jtitle>Accreditation and quality assurance</jtitle><stitle>Accred Qual Assur</stitle><date>2010-07-01</date><risdate>2010</risdate><volume>15</volume><issue>7</issue><spage>379</spage><epage>389</epage><pages>379-389</pages><issn>0949-1775</issn><eissn>1432-0517</eissn><abstract>Inter-laboratory studies (especially so-called key comparisons) are conducted to evaluate both national and international equivalence of measurement. In these studies, a reference value of some measurand (the quantity intended to be measured) is developed and results for all laboratories are compared to this single value. How to determine the reference value is not completely obvious if there are observations and/or laboratories that could be considered outliers. Since ignoring results from one or more participating laboratories is untenable in practical terms, developing methods that are robust to the possibility that a small fraction of the laboratories produces observations unlike those from the others is critical. This paper outlines two Bayesian methods of analyzing inter-laboratory data that have been proposed in the literature and suggests three modifications of one that are more robust to outliers. A simulation study is conducted to compare the five methods.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00769-010-0652-2</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0949-1775
ispartof Accreditation and quality assurance, 2010-07, Vol.15 (7), p.379-389
issn 0949-1775
1432-0517
language eng
recordid cdi_proquest_journals_2917923704
source ProQuest Central (Alumni Edition); Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Analytical Chemistry
Bayesian analysis
Biochemistry
Chemistry
Chemistry and Materials Science
Commercial Law
Ecotoxicology
Exact sciences and technology
Food Science
General Paper
Laboratories
Marketing
Outliers (statistics)
Robustness
Sample variance
title Using Bayes methods and mixture models in inter-laboratory studies with outliers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A51%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Bayes%20methods%20and%20mixture%20models%20in%20inter-laboratory%20studies%20with%20outliers&rft.jtitle=Accreditation%20and%20quality%20assurance&rft.au=Page,%20Garritt%20L.&rft.date=2010-07-01&rft.volume=15&rft.issue=7&rft.spage=379&rft.epage=389&rft.pages=379-389&rft.issn=0949-1775&rft.eissn=1432-0517&rft_id=info:doi/10.1007/s00769-010-0652-2&rft_dat=%3Cproquest_cross%3E2917923704%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917923704&rft_id=info:pmid/&rfr_iscdi=true