Ant colony systems optimization applied to BNF grammars rule derivation (ACORD algorithm)
Ant colony systems have been widely employed in optimization issues primarily focused on path finding optimization, such as travelling salesman problem. The main advantage lies in the choice of the edge to be explored, defined using pheromone trails. This paper proposes the use of ant colony systems...
Gespeichert in:
Veröffentlicht in: | Soft computing (Berlin, Germany) Germany), 2020-03, Vol.24 (5), p.3141-3154 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3154 |
---|---|
container_issue | 5 |
container_start_page | 3141 |
container_title | Soft computing (Berlin, Germany) |
container_volume | 24 |
creator | de Mingo López, Luis Fernando Gómez Blas, Nuria Morales Lucas, Clemencio |
description | Ant colony systems have been widely employed in optimization issues primarily focused on path finding optimization, such as travelling salesman problem. The main advantage lies in the choice of the edge to be explored, defined using pheromone trails. This paper proposes the use of ant colony systems to explore a Backus–Naur form grammar whose elements are solutions to a given problem. Similar models, without using ant colonies, have been used to solve optimization problems or to automatically generate programs such as grammatical swarm (based on particle swarm optimization) and grammatical evolution (based on genetic algorithms). This work presents the application of proposed ant colony rule derivation algorithm and benchmarks this novel approach in a well-known deceptive problem, the Santa Fe Trail. Proposed algorithm opens the way to a new branch of research in swarm intelligence, which until now has been almost nonexistent, using ant colony algorithms to generate solutions of a given problem described by a BNF grammar with the advantage of genotype/phenotype mapping, described in grammatical evolution. In this case, such mapping is performed based on the pheromone concentration for each production rule. The experimental results demonstrate proposed algorithm outperforms grammatical evolution algorithm in the Santa Fe Trail problem with higher success rates and better solutions in terms of the required steps. |
doi_str_mv | 10.1007/s00500-020-04670-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917922912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917922912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-3ca6b5fd90c093b244c1e0df37ddc28a99bfaea9e236e681f843815d90925efe3</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwB5gsscAQuH4kjsfSUkCqqIRgYLLcxCmpkjjYLlL59ZgGiY3hPobvnKt7EDoncE0AxI0HSAESoLF4JiCRB2hEOGOJ4EIe7neaiIyzY3Ti_QaAEpGyEXqbdAEXtrHdDvudD6b12PahbusvHWrbYd33TW1KHCy-fZrjtdNtq53HbtsYXBpXfw7c5WS6fJ5h3aytq8N7e3WKjirdeHP2O8fodX73Mn1IFsv7x-lkkRSckJCwQmertColFCDZinJeEANlxURZFjTXUq4qbbQ0lGUmy0mVc5aTNPKSpqYybIwuBt_e2Y-t8UFt7NZ18aSikghJY6eRogNVOOu9M5XqXR0f2SkC6idCNUSoYoRqH6GSUcQGkY9wtzbuz_of1Te1cnQn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917922912</pqid></control><display><type>article</type><title>Ant colony systems optimization applied to BNF grammars rule derivation (ACORD algorithm)</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>de Mingo López, Luis Fernando ; Gómez Blas, Nuria ; Morales Lucas, Clemencio</creator><creatorcontrib>de Mingo López, Luis Fernando ; Gómez Blas, Nuria ; Morales Lucas, Clemencio</creatorcontrib><description>Ant colony systems have been widely employed in optimization issues primarily focused on path finding optimization, such as travelling salesman problem. The main advantage lies in the choice of the edge to be explored, defined using pheromone trails. This paper proposes the use of ant colony systems to explore a Backus–Naur form grammar whose elements are solutions to a given problem. Similar models, without using ant colonies, have been used to solve optimization problems or to automatically generate programs such as grammatical swarm (based on particle swarm optimization) and grammatical evolution (based on genetic algorithms). This work presents the application of proposed ant colony rule derivation algorithm and benchmarks this novel approach in a well-known deceptive problem, the Santa Fe Trail. Proposed algorithm opens the way to a new branch of research in swarm intelligence, which until now has been almost nonexistent, using ant colony algorithms to generate solutions of a given problem described by a BNF grammar with the advantage of genotype/phenotype mapping, described in grammatical evolution. In this case, such mapping is performed based on the pheromone concentration for each production rule. The experimental results demonstrate proposed algorithm outperforms grammatical evolution algorithm in the Santa Fe Trail problem with higher success rates and better solutions in terms of the required steps.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-020-04670-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Ant colony optimization ; Artificial Intelligence ; Computational Intelligence ; Control ; Derivation ; Engineering ; Evolutionary algorithms ; Foundations ; Genetic algorithms ; Genotype & phenotype ; Grammar ; Grammars ; Hybridization ; Intelligence ; Mapping ; Mathematical Logic and Foundations ; Mechatronics ; Optimization ; Particle swarm optimization ; Pheromones ; Robotics ; Search engines ; Swarm intelligence ; Traveling salesman problem</subject><ispartof>Soft computing (Berlin, Germany), 2020-03, Vol.24 (5), p.3141-3154</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-3ca6b5fd90c093b244c1e0df37ddc28a99bfaea9e236e681f843815d90925efe3</citedby><cites>FETCH-LOGICAL-c411t-3ca6b5fd90c093b244c1e0df37ddc28a99bfaea9e236e681f843815d90925efe3</cites><orcidid>0000-0002-9249-6722</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-020-04670-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917922912?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>de Mingo López, Luis Fernando</creatorcontrib><creatorcontrib>Gómez Blas, Nuria</creatorcontrib><creatorcontrib>Morales Lucas, Clemencio</creatorcontrib><title>Ant colony systems optimization applied to BNF grammars rule derivation (ACORD algorithm)</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>Ant colony systems have been widely employed in optimization issues primarily focused on path finding optimization, such as travelling salesman problem. The main advantage lies in the choice of the edge to be explored, defined using pheromone trails. This paper proposes the use of ant colony systems to explore a Backus–Naur form grammar whose elements are solutions to a given problem. Similar models, without using ant colonies, have been used to solve optimization problems or to automatically generate programs such as grammatical swarm (based on particle swarm optimization) and grammatical evolution (based on genetic algorithms). This work presents the application of proposed ant colony rule derivation algorithm and benchmarks this novel approach in a well-known deceptive problem, the Santa Fe Trail. Proposed algorithm opens the way to a new branch of research in swarm intelligence, which until now has been almost nonexistent, using ant colony algorithms to generate solutions of a given problem described by a BNF grammar with the advantage of genotype/phenotype mapping, described in grammatical evolution. In this case, such mapping is performed based on the pheromone concentration for each production rule. The experimental results demonstrate proposed algorithm outperforms grammatical evolution algorithm in the Santa Fe Trail problem with higher success rates and better solutions in terms of the required steps.</description><subject>Ant colony optimization</subject><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Derivation</subject><subject>Engineering</subject><subject>Evolutionary algorithms</subject><subject>Foundations</subject><subject>Genetic algorithms</subject><subject>Genotype & phenotype</subject><subject>Grammar</subject><subject>Grammars</subject><subject>Hybridization</subject><subject>Intelligence</subject><subject>Mapping</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Pheromones</subject><subject>Robotics</subject><subject>Search engines</subject><subject>Swarm intelligence</subject><subject>Traveling salesman problem</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kDtPwzAUhS0EEqXwB5gsscAQuH4kjsfSUkCqqIRgYLLcxCmpkjjYLlL59ZgGiY3hPobvnKt7EDoncE0AxI0HSAESoLF4JiCRB2hEOGOJ4EIe7neaiIyzY3Ti_QaAEpGyEXqbdAEXtrHdDvudD6b12PahbusvHWrbYd33TW1KHCy-fZrjtdNtq53HbtsYXBpXfw7c5WS6fJ5h3aytq8N7e3WKjirdeHP2O8fodX73Mn1IFsv7x-lkkRSckJCwQmertColFCDZinJeEANlxURZFjTXUq4qbbQ0lGUmy0mVc5aTNPKSpqYybIwuBt_e2Y-t8UFt7NZ18aSikghJY6eRogNVOOu9M5XqXR0f2SkC6idCNUSoYoRqH6GSUcQGkY9wtzbuz_of1Te1cnQn</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>de Mingo López, Luis Fernando</creator><creator>Gómez Blas, Nuria</creator><creator>Morales Lucas, Clemencio</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-9249-6722</orcidid></search><sort><creationdate>20200301</creationdate><title>Ant colony systems optimization applied to BNF grammars rule derivation (ACORD algorithm)</title><author>de Mingo López, Luis Fernando ; Gómez Blas, Nuria ; Morales Lucas, Clemencio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-3ca6b5fd90c093b244c1e0df37ddc28a99bfaea9e236e681f843815d90925efe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ant colony optimization</topic><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Derivation</topic><topic>Engineering</topic><topic>Evolutionary algorithms</topic><topic>Foundations</topic><topic>Genetic algorithms</topic><topic>Genotype & phenotype</topic><topic>Grammar</topic><topic>Grammars</topic><topic>Hybridization</topic><topic>Intelligence</topic><topic>Mapping</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Pheromones</topic><topic>Robotics</topic><topic>Search engines</topic><topic>Swarm intelligence</topic><topic>Traveling salesman problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Mingo López, Luis Fernando</creatorcontrib><creatorcontrib>Gómez Blas, Nuria</creatorcontrib><creatorcontrib>Morales Lucas, Clemencio</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Mingo López, Luis Fernando</au><au>Gómez Blas, Nuria</au><au>Morales Lucas, Clemencio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ant colony systems optimization applied to BNF grammars rule derivation (ACORD algorithm)</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>24</volume><issue>5</issue><spage>3141</spage><epage>3154</epage><pages>3141-3154</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>Ant colony systems have been widely employed in optimization issues primarily focused on path finding optimization, such as travelling salesman problem. The main advantage lies in the choice of the edge to be explored, defined using pheromone trails. This paper proposes the use of ant colony systems to explore a Backus–Naur form grammar whose elements are solutions to a given problem. Similar models, without using ant colonies, have been used to solve optimization problems or to automatically generate programs such as grammatical swarm (based on particle swarm optimization) and grammatical evolution (based on genetic algorithms). This work presents the application of proposed ant colony rule derivation algorithm and benchmarks this novel approach in a well-known deceptive problem, the Santa Fe Trail. Proposed algorithm opens the way to a new branch of research in swarm intelligence, which until now has been almost nonexistent, using ant colony algorithms to generate solutions of a given problem described by a BNF grammar with the advantage of genotype/phenotype mapping, described in grammatical evolution. In this case, such mapping is performed based on the pheromone concentration for each production rule. The experimental results demonstrate proposed algorithm outperforms grammatical evolution algorithm in the Santa Fe Trail problem with higher success rates and better solutions in terms of the required steps.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-020-04670-9</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9249-6722</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-7643 |
ispartof | Soft computing (Berlin, Germany), 2020-03, Vol.24 (5), p.3141-3154 |
issn | 1432-7643 1433-7479 |
language | eng |
recordid | cdi_proquest_journals_2917922912 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Ant colony optimization Artificial Intelligence Computational Intelligence Control Derivation Engineering Evolutionary algorithms Foundations Genetic algorithms Genotype & phenotype Grammar Grammars Hybridization Intelligence Mapping Mathematical Logic and Foundations Mechatronics Optimization Particle swarm optimization Pheromones Robotics Search engines Swarm intelligence Traveling salesman problem |
title | Ant colony systems optimization applied to BNF grammars rule derivation (ACORD algorithm) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A02%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ant%20colony%20systems%20optimization%20applied%20to%20BNF%20grammars%20rule%20derivation%20(ACORD%20algorithm)&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=de%20Mingo%C2%A0L%C3%B3pez,%20Luis%20Fernando&rft.date=2020-03-01&rft.volume=24&rft.issue=5&rft.spage=3141&rft.epage=3154&rft.pages=3141-3154&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-020-04670-9&rft_dat=%3Cproquest_cross%3E2917922912%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917922912&rft_id=info:pmid/&rfr_iscdi=true |