RETRACTED ARTICLE: A metaheuristic optimization model for spectral allocation in cognitive networks based on ant colony algorithm (M-ACO)
Cognitive radio networks have been gaining widespread attraction among researchers especially with the increasing demand for radio frequency spectrum whose availability is quite scarce. Cognitive radio networks provide an ideal solution to allocate spectrum to users on an intelligent basis through a...
Gespeichert in:
Veröffentlicht in: | Soft computing (Berlin, Germany) Germany), 2020-10, Vol.24 (20), p.15551-15560 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15560 |
---|---|
container_issue | 20 |
container_start_page | 15551 |
container_title | Soft computing (Berlin, Germany) |
container_volume | 24 |
creator | Padmanaban, B. Sathiyamoorthy, S. |
description | Cognitive radio networks have been gaining widespread attraction among researchers especially with the increasing demand for radio frequency spectrum whose availability is quite scarce. Cognitive radio networks provide an ideal solution to allocate spectrum to users on an intelligent basis through a series of spectrum sensing and decision making. A metaheuristic soft computing framework is proposed and implemented in this research work by using powerful optimization concepts of evolutionary algorithm, namely ant colony algorithm, coupled with graph-cut modeling of given wireless network to provide the expected precision of detection. Channel characteristics have been taken as the feature vectors which are modeled as
n
-tuple graph to decide upon the maximization of channel allocation probability based on availability in an opportunistic basis. Exhaustive experimentations have been conducted and optimal performance justified against other benchmark algorithms. |
doi_str_mv | 10.1007/s00500-020-04882-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917921729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917921729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c115z-8f6361f4fa84373dab7be969c3f205bad229b3a1504714729b7f925211e96e183</originalsourceid><addsrcrecordid>eNp9kM9Kw0AQxoMoWKsv4GnBix6i-yfJJt5CjFqoFEo8L5tk025NsnV3qzRv4Fu7NoI3D8PM8H3fDPw87xLBWwQhvTMQhhD6ELsK4hj7w5E3QQEhPg1ocnyYsU-jgJx6Z8ZsIMSIhmTifS3zYplmRf4A0mUxy-b5PUhBJyxfi52WxsoKqK2VnRy4laoHnapFCxqlgdmKymreAt62qhpV2YNKrXpp5YcAvbCfSr8ZUHIjauBk3lunt6rfu9BKaWnXHbh-8dNscXPunTS8NeLit0-918e8yJ79-eJplqVzv0IoHPy4iUiEmqDhcUAoqXlJS5FESUUaDMOS1xgnJeEohAFFAXULbRIcYoScS6CYTL2r8e5Wq_edMJZt1E737iXDCaKJA4MT58Kjq9LKGC0attWy43rPEGQ_yNmInDnk7ICcDS5ExpBx5n4l9N_pf1Lf3GyEFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917921729</pqid></control><display><type>article</type><title>RETRACTED ARTICLE: A metaheuristic optimization model for spectral allocation in cognitive networks based on ant colony algorithm (M-ACO)</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Padmanaban, B. ; Sathiyamoorthy, S.</creator><creatorcontrib>Padmanaban, B. ; Sathiyamoorthy, S.</creatorcontrib><description>Cognitive radio networks have been gaining widespread attraction among researchers especially with the increasing demand for radio frequency spectrum whose availability is quite scarce. Cognitive radio networks provide an ideal solution to allocate spectrum to users on an intelligent basis through a series of spectrum sensing and decision making. A metaheuristic soft computing framework is proposed and implemented in this research work by using powerful optimization concepts of evolutionary algorithm, namely ant colony algorithm, coupled with graph-cut modeling of given wireless network to provide the expected precision of detection. Channel characteristics have been taken as the feature vectors which are modeled as
n
-tuple graph to decide upon the maximization of channel allocation probability based on availability in an opportunistic basis. Exhaustive experimentations have been conducted and optimal performance justified against other benchmark algorithms.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-020-04882-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Ant colony optimization ; Artificial Intelligence ; Availability ; Cognitive radio ; Communication ; Computational Intelligence ; Control ; Decision making ; Engineering ; Evolutionary algorithms ; False alarms ; Frequency spectrum ; Heuristic methods ; Machine learning ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Neural networks ; Optimization models ; Radio networks ; Robotics ; Soft computing ; Spectrum allocation ; Wireless networks</subject><ispartof>Soft computing (Berlin, Germany), 2020-10, Vol.24 (20), p.15551-15560</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c115z-8f6361f4fa84373dab7be969c3f205bad229b3a1504714729b7f925211e96e183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-020-04882-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917921729?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,21393,27929,27930,33749,41493,42562,43810,51324,64390,64394,72474</link.rule.ids></links><search><creatorcontrib>Padmanaban, B.</creatorcontrib><creatorcontrib>Sathiyamoorthy, S.</creatorcontrib><title>RETRACTED ARTICLE: A metaheuristic optimization model for spectral allocation in cognitive networks based on ant colony algorithm (M-ACO)</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>Cognitive radio networks have been gaining widespread attraction among researchers especially with the increasing demand for radio frequency spectrum whose availability is quite scarce. Cognitive radio networks provide an ideal solution to allocate spectrum to users on an intelligent basis through a series of spectrum sensing and decision making. A metaheuristic soft computing framework is proposed and implemented in this research work by using powerful optimization concepts of evolutionary algorithm, namely ant colony algorithm, coupled with graph-cut modeling of given wireless network to provide the expected precision of detection. Channel characteristics have been taken as the feature vectors which are modeled as
n
-tuple graph to decide upon the maximization of channel allocation probability based on availability in an opportunistic basis. Exhaustive experimentations have been conducted and optimal performance justified against other benchmark algorithms.</description><subject>Ant colony optimization</subject><subject>Artificial Intelligence</subject><subject>Availability</subject><subject>Cognitive radio</subject><subject>Communication</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Decision making</subject><subject>Engineering</subject><subject>Evolutionary algorithms</subject><subject>False alarms</subject><subject>Frequency spectrum</subject><subject>Heuristic methods</subject><subject>Machine learning</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Neural networks</subject><subject>Optimization models</subject><subject>Radio networks</subject><subject>Robotics</subject><subject>Soft computing</subject><subject>Spectrum allocation</subject><subject>Wireless networks</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM9Kw0AQxoMoWKsv4GnBix6i-yfJJt5CjFqoFEo8L5tk025NsnV3qzRv4Fu7NoI3D8PM8H3fDPw87xLBWwQhvTMQhhD6ELsK4hj7w5E3QQEhPg1ocnyYsU-jgJx6Z8ZsIMSIhmTifS3zYplmRf4A0mUxy-b5PUhBJyxfi52WxsoKqK2VnRy4laoHnapFCxqlgdmKymreAt62qhpV2YNKrXpp5YcAvbCfSr8ZUHIjauBk3lunt6rfu9BKaWnXHbh-8dNscXPunTS8NeLit0-918e8yJ79-eJplqVzv0IoHPy4iUiEmqDhcUAoqXlJS5FESUUaDMOS1xgnJeEohAFFAXULbRIcYoScS6CYTL2r8e5Wq_edMJZt1E737iXDCaKJA4MT58Kjq9LKGC0attWy43rPEGQ_yNmInDnk7ICcDS5ExpBx5n4l9N_pf1Lf3GyEFg</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Padmanaban, B.</creator><creator>Sathiyamoorthy, S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20201001</creationdate><title>RETRACTED ARTICLE: A metaheuristic optimization model for spectral allocation in cognitive networks based on ant colony algorithm (M-ACO)</title><author>Padmanaban, B. ; Sathiyamoorthy, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c115z-8f6361f4fa84373dab7be969c3f205bad229b3a1504714729b7f925211e96e183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ant colony optimization</topic><topic>Artificial Intelligence</topic><topic>Availability</topic><topic>Cognitive radio</topic><topic>Communication</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Decision making</topic><topic>Engineering</topic><topic>Evolutionary algorithms</topic><topic>False alarms</topic><topic>Frequency spectrum</topic><topic>Heuristic methods</topic><topic>Machine learning</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Neural networks</topic><topic>Optimization models</topic><topic>Radio networks</topic><topic>Robotics</topic><topic>Soft computing</topic><topic>Spectrum allocation</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Padmanaban, B.</creatorcontrib><creatorcontrib>Sathiyamoorthy, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Padmanaban, B.</au><au>Sathiyamoorthy, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RETRACTED ARTICLE: A metaheuristic optimization model for spectral allocation in cognitive networks based on ant colony algorithm (M-ACO)</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>24</volume><issue>20</issue><spage>15551</spage><epage>15560</epage><pages>15551-15560</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>Cognitive radio networks have been gaining widespread attraction among researchers especially with the increasing demand for radio frequency spectrum whose availability is quite scarce. Cognitive radio networks provide an ideal solution to allocate spectrum to users on an intelligent basis through a series of spectrum sensing and decision making. A metaheuristic soft computing framework is proposed and implemented in this research work by using powerful optimization concepts of evolutionary algorithm, namely ant colony algorithm, coupled with graph-cut modeling of given wireless network to provide the expected precision of detection. Channel characteristics have been taken as the feature vectors which are modeled as
n
-tuple graph to decide upon the maximization of channel allocation probability based on availability in an opportunistic basis. Exhaustive experimentations have been conducted and optimal performance justified against other benchmark algorithms.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-020-04882-z</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-7643 |
ispartof | Soft computing (Berlin, Germany), 2020-10, Vol.24 (20), p.15551-15560 |
issn | 1432-7643 1433-7479 |
language | eng |
recordid | cdi_proquest_journals_2917921729 |
source | SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Ant colony optimization Artificial Intelligence Availability Cognitive radio Communication Computational Intelligence Control Decision making Engineering Evolutionary algorithms False alarms Frequency spectrum Heuristic methods Machine learning Mathematical Logic and Foundations Mechatronics Methodologies and Application Neural networks Optimization models Radio networks Robotics Soft computing Spectrum allocation Wireless networks |
title | RETRACTED ARTICLE: A metaheuristic optimization model for spectral allocation in cognitive networks based on ant colony algorithm (M-ACO) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T20%3A25%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RETRACTED%20ARTICLE:%20A%20metaheuristic%20optimization%20model%20for%20spectral%20allocation%20in%20cognitive%20networks%20based%20on%20ant%20colony%20algorithm%20(M-ACO)&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Padmanaban,%20B.&rft.date=2020-10-01&rft.volume=24&rft.issue=20&rft.spage=15551&rft.epage=15560&rft.pages=15551-15560&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-020-04882-z&rft_dat=%3Cproquest_cross%3E2917921729%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917921729&rft_id=info:pmid/&rfr_iscdi=true |