Millimeter-Wave Band Resonator with Surface Coil for DNP–NMR Measurements
In this study, we developed a surface coil with a meanderline shape for nuclear magnetic resonance (NMR) combined with a Fabry–Pérot resonator (FPR) for millimeter-wave band electron-spin resonance (ESR). Our goal was to perform both NMR and ESR measurements with high sensitivity, in particular for...
Gespeichert in:
Veröffentlicht in: | Applied magnetic resonance 2021-04, Vol.52 (4), p.317-335 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 335 |
---|---|
container_issue | 4 |
container_start_page | 317 |
container_title | Applied magnetic resonance |
container_volume | 52 |
creator | Ishikawa, Yuya Koizumi, Yuta Fujii, Yutaka Oida, Tomoki Fukuda, Akira Lee, Soonchil Kobayashi, Eiichi Kikuchi, Hikomitsu Järvinen, Jarno Vasiliev, Sergey Mitsudo, Seitaro |
description | In this study, we developed a surface coil with a meanderline shape for nuclear magnetic resonance (NMR) combined with a Fabry–Pérot resonator (FPR) for millimeter-wave band electron-spin resonance (ESR). Our goal was to perform both NMR and ESR measurements with high sensitivity, in particular for thin samples, such as a silicon wafer. We measured NMR signals using a variety of meanderline coil shapes and determined the optimal turn number of the meanderline as well as the clearance length between the lines. The FPR consisted of spherical and flat mirrors, where the latter was constructed of a thin gold layer with the meanderline underneath. We observed that the meanderline provided high sensitivity when the gold layer was sufficiently thin at approximately 16 nm. We also measured millimeter-wave ESR from a thin sample of phosphorous-doped silicon with the developed FPR with the meanderline. |
doi_str_mv | 10.1007/s00723-021-01328-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917920950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917920950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-75c219cdab1ab2ca03a0ea69d5c20e5f850593b20e0a957daa2bde855ebcbc893</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaRWBvGNq7jJZRf0RZUQCwtx5lAqjQpdgKiK-7ADTkJhiKxYzMzenpvZvQRsstgnwGogxALFxQ4o8AET-lyjfTYgAmqJKh10gMtFNXiUG2SrRBmAEymTPXI1bisqnKOLXr6YF8wObZ1nkwxNLVtG5-8lu1Tctv5wjpMhk1ZJUVUTyY3n-8fk_E0GaMNncc51m3YJhuFrQLu_PY-uT87vRte0NH1-eXwaEQdV9DGjxxn2uU2YzbjzoKwgHag86gDyiKVILXI4gxWS5Vby7McUykxc5lLteiTvdXehW-eOwytmTWdr-NJwzVTmoOWEF185XK-CcFjYRa-nFv_ZhiYb2hmBc1EaOYHmlnGkFiFQjTXj-j_Vv-T-gJtF3C7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917920950</pqid></control><display><type>article</type><title>Millimeter-Wave Band Resonator with Surface Coil for DNP–NMR Measurements</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Ishikawa, Yuya ; Koizumi, Yuta ; Fujii, Yutaka ; Oida, Tomoki ; Fukuda, Akira ; Lee, Soonchil ; Kobayashi, Eiichi ; Kikuchi, Hikomitsu ; Järvinen, Jarno ; Vasiliev, Sergey ; Mitsudo, Seitaro</creator><creatorcontrib>Ishikawa, Yuya ; Koizumi, Yuta ; Fujii, Yutaka ; Oida, Tomoki ; Fukuda, Akira ; Lee, Soonchil ; Kobayashi, Eiichi ; Kikuchi, Hikomitsu ; Järvinen, Jarno ; Vasiliev, Sergey ; Mitsudo, Seitaro</creatorcontrib><description>In this study, we developed a surface coil with a meanderline shape for nuclear magnetic resonance (NMR) combined with a Fabry–Pérot resonator (FPR) for millimeter-wave band electron-spin resonance (ESR). Our goal was to perform both NMR and ESR measurements with high sensitivity, in particular for thin samples, such as a silicon wafer. We measured NMR signals using a variety of meanderline coil shapes and determined the optimal turn number of the meanderline as well as the clearance length between the lines. The FPR consisted of spherical and flat mirrors, where the latter was constructed of a thin gold layer with the meanderline underneath. We observed that the meanderline provided high sensitivity when the gold layer was sufficiently thin at approximately 16 nm. We also measured millimeter-wave ESR from a thin sample of phosphorous-doped silicon with the developed FPR with the meanderline.</description><identifier>ISSN: 0937-9347</identifier><identifier>EISSN: 1613-7507</identifier><identifier>DOI: 10.1007/s00723-021-01328-z</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Atoms and Molecules in Strong Fields ; Coils ; Electron spin ; Electrons ; Gold ; Laser Matter Interaction ; Magnetic fields ; Millimeter waves ; NMR ; Nuclear magnetic resonance ; Organic Chemistry ; Original Paper ; Physical Chemistry ; Physical properties ; Physics ; Physics and Astronomy ; Printed circuit boards ; Quantum computing ; Resonators ; Sensitivity ; Silicon ; Silicon wafers ; Solid State Physics ; Spectroscopy/Spectrometry ; Spin resonance ; Temperature ; Terahertz Spectroscopy</subject><ispartof>Applied magnetic resonance, 2021-04, Vol.52 (4), p.317-335</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-75c219cdab1ab2ca03a0ea69d5c20e5f850593b20e0a957daa2bde855ebcbc893</cites><orcidid>0000-0002-1978-0284</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00723-021-01328-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917920950?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,21389,21390,21391,23256,27924,27925,33530,33703,33744,34005,34314,41488,42557,43659,43787,43805,43953,44067,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Ishikawa, Yuya</creatorcontrib><creatorcontrib>Koizumi, Yuta</creatorcontrib><creatorcontrib>Fujii, Yutaka</creatorcontrib><creatorcontrib>Oida, Tomoki</creatorcontrib><creatorcontrib>Fukuda, Akira</creatorcontrib><creatorcontrib>Lee, Soonchil</creatorcontrib><creatorcontrib>Kobayashi, Eiichi</creatorcontrib><creatorcontrib>Kikuchi, Hikomitsu</creatorcontrib><creatorcontrib>Järvinen, Jarno</creatorcontrib><creatorcontrib>Vasiliev, Sergey</creatorcontrib><creatorcontrib>Mitsudo, Seitaro</creatorcontrib><title>Millimeter-Wave Band Resonator with Surface Coil for DNP–NMR Measurements</title><title>Applied magnetic resonance</title><addtitle>Appl Magn Reson</addtitle><description>In this study, we developed a surface coil with a meanderline shape for nuclear magnetic resonance (NMR) combined with a Fabry–Pérot resonator (FPR) for millimeter-wave band electron-spin resonance (ESR). Our goal was to perform both NMR and ESR measurements with high sensitivity, in particular for thin samples, such as a silicon wafer. We measured NMR signals using a variety of meanderline coil shapes and determined the optimal turn number of the meanderline as well as the clearance length between the lines. The FPR consisted of spherical and flat mirrors, where the latter was constructed of a thin gold layer with the meanderline underneath. We observed that the meanderline provided high sensitivity when the gold layer was sufficiently thin at approximately 16 nm. We also measured millimeter-wave ESR from a thin sample of phosphorous-doped silicon with the developed FPR with the meanderline.</description><subject>Atoms and Molecules in Strong Fields</subject><subject>Coils</subject><subject>Electron spin</subject><subject>Electrons</subject><subject>Gold</subject><subject>Laser Matter Interaction</subject><subject>Magnetic fields</subject><subject>Millimeter waves</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Organic Chemistry</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Printed circuit boards</subject><subject>Quantum computing</subject><subject>Resonators</subject><subject>Sensitivity</subject><subject>Silicon</subject><subject>Silicon wafers</subject><subject>Solid State Physics</subject><subject>Spectroscopy/Spectrometry</subject><subject>Spin resonance</subject><subject>Temperature</subject><subject>Terahertz Spectroscopy</subject><issn>0937-9347</issn><issn>1613-7507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1OwzAQhS0EEqVwAVaRWBvGNq7jJZRf0RZUQCwtx5lAqjQpdgKiK-7ADTkJhiKxYzMzenpvZvQRsstgnwGogxALFxQ4o8AET-lyjfTYgAmqJKh10gMtFNXiUG2SrRBmAEymTPXI1bisqnKOLXr6YF8wObZ1nkwxNLVtG5-8lu1Tctv5wjpMhk1ZJUVUTyY3n-8fk_E0GaMNncc51m3YJhuFrQLu_PY-uT87vRte0NH1-eXwaEQdV9DGjxxn2uU2YzbjzoKwgHag86gDyiKVILXI4gxWS5Vby7McUykxc5lLteiTvdXehW-eOwytmTWdr-NJwzVTmoOWEF185XK-CcFjYRa-nFv_ZhiYb2hmBc1EaOYHmlnGkFiFQjTXj-j_Vv-T-gJtF3C7</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Ishikawa, Yuya</creator><creator>Koizumi, Yuta</creator><creator>Fujii, Yutaka</creator><creator>Oida, Tomoki</creator><creator>Fukuda, Akira</creator><creator>Lee, Soonchil</creator><creator>Kobayashi, Eiichi</creator><creator>Kikuchi, Hikomitsu</creator><creator>Järvinen, Jarno</creator><creator>Vasiliev, Sergey</creator><creator>Mitsudo, Seitaro</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1978-0284</orcidid></search><sort><creationdate>20210401</creationdate><title>Millimeter-Wave Band Resonator with Surface Coil for DNP–NMR Measurements</title><author>Ishikawa, Yuya ; Koizumi, Yuta ; Fujii, Yutaka ; Oida, Tomoki ; Fukuda, Akira ; Lee, Soonchil ; Kobayashi, Eiichi ; Kikuchi, Hikomitsu ; Järvinen, Jarno ; Vasiliev, Sergey ; Mitsudo, Seitaro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-75c219cdab1ab2ca03a0ea69d5c20e5f850593b20e0a957daa2bde855ebcbc893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atoms and Molecules in Strong Fields</topic><topic>Coils</topic><topic>Electron spin</topic><topic>Electrons</topic><topic>Gold</topic><topic>Laser Matter Interaction</topic><topic>Magnetic fields</topic><topic>Millimeter waves</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Organic Chemistry</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Printed circuit boards</topic><topic>Quantum computing</topic><topic>Resonators</topic><topic>Sensitivity</topic><topic>Silicon</topic><topic>Silicon wafers</topic><topic>Solid State Physics</topic><topic>Spectroscopy/Spectrometry</topic><topic>Spin resonance</topic><topic>Temperature</topic><topic>Terahertz Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishikawa, Yuya</creatorcontrib><creatorcontrib>Koizumi, Yuta</creatorcontrib><creatorcontrib>Fujii, Yutaka</creatorcontrib><creatorcontrib>Oida, Tomoki</creatorcontrib><creatorcontrib>Fukuda, Akira</creatorcontrib><creatorcontrib>Lee, Soonchil</creatorcontrib><creatorcontrib>Kobayashi, Eiichi</creatorcontrib><creatorcontrib>Kikuchi, Hikomitsu</creatorcontrib><creatorcontrib>Järvinen, Jarno</creatorcontrib><creatorcontrib>Vasiliev, Sergey</creatorcontrib><creatorcontrib>Mitsudo, Seitaro</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Applied magnetic resonance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishikawa, Yuya</au><au>Koizumi, Yuta</au><au>Fujii, Yutaka</au><au>Oida, Tomoki</au><au>Fukuda, Akira</au><au>Lee, Soonchil</au><au>Kobayashi, Eiichi</au><au>Kikuchi, Hikomitsu</au><au>Järvinen, Jarno</au><au>Vasiliev, Sergey</au><au>Mitsudo, Seitaro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Millimeter-Wave Band Resonator with Surface Coil for DNP–NMR Measurements</atitle><jtitle>Applied magnetic resonance</jtitle><stitle>Appl Magn Reson</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>52</volume><issue>4</issue><spage>317</spage><epage>335</epage><pages>317-335</pages><issn>0937-9347</issn><eissn>1613-7507</eissn><abstract>In this study, we developed a surface coil with a meanderline shape for nuclear magnetic resonance (NMR) combined with a Fabry–Pérot resonator (FPR) for millimeter-wave band electron-spin resonance (ESR). Our goal was to perform both NMR and ESR measurements with high sensitivity, in particular for thin samples, such as a silicon wafer. We measured NMR signals using a variety of meanderline coil shapes and determined the optimal turn number of the meanderline as well as the clearance length between the lines. The FPR consisted of spherical and flat mirrors, where the latter was constructed of a thin gold layer with the meanderline underneath. We observed that the meanderline provided high sensitivity when the gold layer was sufficiently thin at approximately 16 nm. We also measured millimeter-wave ESR from a thin sample of phosphorous-doped silicon with the developed FPR with the meanderline.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00723-021-01328-z</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-1978-0284</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0937-9347 |
ispartof | Applied magnetic resonance, 2021-04, Vol.52 (4), p.317-335 |
issn | 0937-9347 1613-7507 |
language | eng |
recordid | cdi_proquest_journals_2917920950 |
source | ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; ProQuest Central Korea; ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Atoms and Molecules in Strong Fields Coils Electron spin Electrons Gold Laser Matter Interaction Magnetic fields Millimeter waves NMR Nuclear magnetic resonance Organic Chemistry Original Paper Physical Chemistry Physical properties Physics Physics and Astronomy Printed circuit boards Quantum computing Resonators Sensitivity Silicon Silicon wafers Solid State Physics Spectroscopy/Spectrometry Spin resonance Temperature Terahertz Spectroscopy |
title | Millimeter-Wave Band Resonator with Surface Coil for DNP–NMR Measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T19%3A28%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Millimeter-Wave%20Band%20Resonator%20with%20Surface%20Coil%20for%20DNP%E2%80%93NMR%20Measurements&rft.jtitle=Applied%20magnetic%20resonance&rft.au=Ishikawa,%20Yuya&rft.date=2021-04-01&rft.volume=52&rft.issue=4&rft.spage=317&rft.epage=335&rft.pages=317-335&rft.issn=0937-9347&rft.eissn=1613-7507&rft_id=info:doi/10.1007/s00723-021-01328-z&rft_dat=%3Cproquest_cross%3E2917920950%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917920950&rft_id=info:pmid/&rfr_iscdi=true |