Millimeter-Wave Band Resonator with Surface Coil for DNP–NMR Measurements

In this study, we developed a surface coil with a meanderline shape for nuclear magnetic resonance (NMR) combined with a Fabry–Pérot resonator (FPR) for millimeter-wave band electron-spin resonance (ESR). Our goal was to perform both NMR and ESR measurements with high sensitivity, in particular for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied magnetic resonance 2021-04, Vol.52 (4), p.317-335
Hauptverfasser: Ishikawa, Yuya, Koizumi, Yuta, Fujii, Yutaka, Oida, Tomoki, Fukuda, Akira, Lee, Soonchil, Kobayashi, Eiichi, Kikuchi, Hikomitsu, Järvinen, Jarno, Vasiliev, Sergey, Mitsudo, Seitaro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 335
container_issue 4
container_start_page 317
container_title Applied magnetic resonance
container_volume 52
creator Ishikawa, Yuya
Koizumi, Yuta
Fujii, Yutaka
Oida, Tomoki
Fukuda, Akira
Lee, Soonchil
Kobayashi, Eiichi
Kikuchi, Hikomitsu
Järvinen, Jarno
Vasiliev, Sergey
Mitsudo, Seitaro
description In this study, we developed a surface coil with a meanderline shape for nuclear magnetic resonance (NMR) combined with a Fabry–Pérot resonator (FPR) for millimeter-wave band electron-spin resonance (ESR). Our goal was to perform both NMR and ESR measurements with high sensitivity, in particular for thin samples, such as a silicon wafer. We measured NMR signals using a variety of meanderline coil shapes and determined the optimal turn number of the meanderline as well as the clearance length between the lines. The FPR consisted of spherical and flat mirrors, where the latter was constructed of a thin gold layer with the meanderline underneath. We observed that the meanderline provided high sensitivity when the gold layer was sufficiently thin at approximately 16 nm. We also measured millimeter-wave ESR from a thin sample of phosphorous-doped silicon with the developed FPR with the meanderline.
doi_str_mv 10.1007/s00723-021-01328-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917920950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917920950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-75c219cdab1ab2ca03a0ea69d5c20e5f850593b20e0a957daa2bde855ebcbc893</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaRWBvGNq7jJZRf0RZUQCwtx5lAqjQpdgKiK-7ADTkJhiKxYzMzenpvZvQRsstgnwGogxALFxQ4o8AET-lyjfTYgAmqJKh10gMtFNXiUG2SrRBmAEymTPXI1bisqnKOLXr6YF8wObZ1nkwxNLVtG5-8lu1Tctv5wjpMhk1ZJUVUTyY3n-8fk_E0GaMNncc51m3YJhuFrQLu_PY-uT87vRte0NH1-eXwaEQdV9DGjxxn2uU2YzbjzoKwgHag86gDyiKVILXI4gxWS5Vby7McUykxc5lLteiTvdXehW-eOwytmTWdr-NJwzVTmoOWEF185XK-CcFjYRa-nFv_ZhiYb2hmBc1EaOYHmlnGkFiFQjTXj-j_Vv-T-gJtF3C7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917920950</pqid></control><display><type>article</type><title>Millimeter-Wave Band Resonator with Surface Coil for DNP–NMR Measurements</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Ishikawa, Yuya ; Koizumi, Yuta ; Fujii, Yutaka ; Oida, Tomoki ; Fukuda, Akira ; Lee, Soonchil ; Kobayashi, Eiichi ; Kikuchi, Hikomitsu ; Järvinen, Jarno ; Vasiliev, Sergey ; Mitsudo, Seitaro</creator><creatorcontrib>Ishikawa, Yuya ; Koizumi, Yuta ; Fujii, Yutaka ; Oida, Tomoki ; Fukuda, Akira ; Lee, Soonchil ; Kobayashi, Eiichi ; Kikuchi, Hikomitsu ; Järvinen, Jarno ; Vasiliev, Sergey ; Mitsudo, Seitaro</creatorcontrib><description>In this study, we developed a surface coil with a meanderline shape for nuclear magnetic resonance (NMR) combined with a Fabry–Pérot resonator (FPR) for millimeter-wave band electron-spin resonance (ESR). Our goal was to perform both NMR and ESR measurements with high sensitivity, in particular for thin samples, such as a silicon wafer. We measured NMR signals using a variety of meanderline coil shapes and determined the optimal turn number of the meanderline as well as the clearance length between the lines. The FPR consisted of spherical and flat mirrors, where the latter was constructed of a thin gold layer with the meanderline underneath. We observed that the meanderline provided high sensitivity when the gold layer was sufficiently thin at approximately 16 nm. We also measured millimeter-wave ESR from a thin sample of phosphorous-doped silicon with the developed FPR with the meanderline.</description><identifier>ISSN: 0937-9347</identifier><identifier>EISSN: 1613-7507</identifier><identifier>DOI: 10.1007/s00723-021-01328-z</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Atoms and Molecules in Strong Fields ; Coils ; Electron spin ; Electrons ; Gold ; Laser Matter Interaction ; Magnetic fields ; Millimeter waves ; NMR ; Nuclear magnetic resonance ; Organic Chemistry ; Original Paper ; Physical Chemistry ; Physical properties ; Physics ; Physics and Astronomy ; Printed circuit boards ; Quantum computing ; Resonators ; Sensitivity ; Silicon ; Silicon wafers ; Solid State Physics ; Spectroscopy/Spectrometry ; Spin resonance ; Temperature ; Terahertz Spectroscopy</subject><ispartof>Applied magnetic resonance, 2021-04, Vol.52 (4), p.317-335</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-75c219cdab1ab2ca03a0ea69d5c20e5f850593b20e0a957daa2bde855ebcbc893</cites><orcidid>0000-0002-1978-0284</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00723-021-01328-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917920950?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,21389,21390,21391,23256,27924,27925,33530,33703,33744,34005,34314,41488,42557,43659,43787,43805,43953,44067,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Ishikawa, Yuya</creatorcontrib><creatorcontrib>Koizumi, Yuta</creatorcontrib><creatorcontrib>Fujii, Yutaka</creatorcontrib><creatorcontrib>Oida, Tomoki</creatorcontrib><creatorcontrib>Fukuda, Akira</creatorcontrib><creatorcontrib>Lee, Soonchil</creatorcontrib><creatorcontrib>Kobayashi, Eiichi</creatorcontrib><creatorcontrib>Kikuchi, Hikomitsu</creatorcontrib><creatorcontrib>Järvinen, Jarno</creatorcontrib><creatorcontrib>Vasiliev, Sergey</creatorcontrib><creatorcontrib>Mitsudo, Seitaro</creatorcontrib><title>Millimeter-Wave Band Resonator with Surface Coil for DNP–NMR Measurements</title><title>Applied magnetic resonance</title><addtitle>Appl Magn Reson</addtitle><description>In this study, we developed a surface coil with a meanderline shape for nuclear magnetic resonance (NMR) combined with a Fabry–Pérot resonator (FPR) for millimeter-wave band electron-spin resonance (ESR). Our goal was to perform both NMR and ESR measurements with high sensitivity, in particular for thin samples, such as a silicon wafer. We measured NMR signals using a variety of meanderline coil shapes and determined the optimal turn number of the meanderline as well as the clearance length between the lines. The FPR consisted of spherical and flat mirrors, where the latter was constructed of a thin gold layer with the meanderline underneath. We observed that the meanderline provided high sensitivity when the gold layer was sufficiently thin at approximately 16 nm. We also measured millimeter-wave ESR from a thin sample of phosphorous-doped silicon with the developed FPR with the meanderline.</description><subject>Atoms and Molecules in Strong Fields</subject><subject>Coils</subject><subject>Electron spin</subject><subject>Electrons</subject><subject>Gold</subject><subject>Laser Matter Interaction</subject><subject>Magnetic fields</subject><subject>Millimeter waves</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Organic Chemistry</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Printed circuit boards</subject><subject>Quantum computing</subject><subject>Resonators</subject><subject>Sensitivity</subject><subject>Silicon</subject><subject>Silicon wafers</subject><subject>Solid State Physics</subject><subject>Spectroscopy/Spectrometry</subject><subject>Spin resonance</subject><subject>Temperature</subject><subject>Terahertz Spectroscopy</subject><issn>0937-9347</issn><issn>1613-7507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1OwzAQhS0EEqVwAVaRWBvGNq7jJZRf0RZUQCwtx5lAqjQpdgKiK-7ADTkJhiKxYzMzenpvZvQRsstgnwGogxALFxQ4o8AET-lyjfTYgAmqJKh10gMtFNXiUG2SrRBmAEymTPXI1bisqnKOLXr6YF8wObZ1nkwxNLVtG5-8lu1Tctv5wjpMhk1ZJUVUTyY3n-8fk_E0GaMNncc51m3YJhuFrQLu_PY-uT87vRte0NH1-eXwaEQdV9DGjxxn2uU2YzbjzoKwgHag86gDyiKVILXI4gxWS5Vby7McUykxc5lLteiTvdXehW-eOwytmTWdr-NJwzVTmoOWEF185XK-CcFjYRa-nFv_ZhiYb2hmBc1EaOYHmlnGkFiFQjTXj-j_Vv-T-gJtF3C7</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Ishikawa, Yuya</creator><creator>Koizumi, Yuta</creator><creator>Fujii, Yutaka</creator><creator>Oida, Tomoki</creator><creator>Fukuda, Akira</creator><creator>Lee, Soonchil</creator><creator>Kobayashi, Eiichi</creator><creator>Kikuchi, Hikomitsu</creator><creator>Järvinen, Jarno</creator><creator>Vasiliev, Sergey</creator><creator>Mitsudo, Seitaro</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1978-0284</orcidid></search><sort><creationdate>20210401</creationdate><title>Millimeter-Wave Band Resonator with Surface Coil for DNP–NMR Measurements</title><author>Ishikawa, Yuya ; Koizumi, Yuta ; Fujii, Yutaka ; Oida, Tomoki ; Fukuda, Akira ; Lee, Soonchil ; Kobayashi, Eiichi ; Kikuchi, Hikomitsu ; Järvinen, Jarno ; Vasiliev, Sergey ; Mitsudo, Seitaro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-75c219cdab1ab2ca03a0ea69d5c20e5f850593b20e0a957daa2bde855ebcbc893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atoms and Molecules in Strong Fields</topic><topic>Coils</topic><topic>Electron spin</topic><topic>Electrons</topic><topic>Gold</topic><topic>Laser Matter Interaction</topic><topic>Magnetic fields</topic><topic>Millimeter waves</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Organic Chemistry</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Printed circuit boards</topic><topic>Quantum computing</topic><topic>Resonators</topic><topic>Sensitivity</topic><topic>Silicon</topic><topic>Silicon wafers</topic><topic>Solid State Physics</topic><topic>Spectroscopy/Spectrometry</topic><topic>Spin resonance</topic><topic>Temperature</topic><topic>Terahertz Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishikawa, Yuya</creatorcontrib><creatorcontrib>Koizumi, Yuta</creatorcontrib><creatorcontrib>Fujii, Yutaka</creatorcontrib><creatorcontrib>Oida, Tomoki</creatorcontrib><creatorcontrib>Fukuda, Akira</creatorcontrib><creatorcontrib>Lee, Soonchil</creatorcontrib><creatorcontrib>Kobayashi, Eiichi</creatorcontrib><creatorcontrib>Kikuchi, Hikomitsu</creatorcontrib><creatorcontrib>Järvinen, Jarno</creatorcontrib><creatorcontrib>Vasiliev, Sergey</creatorcontrib><creatorcontrib>Mitsudo, Seitaro</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Applied magnetic resonance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishikawa, Yuya</au><au>Koizumi, Yuta</au><au>Fujii, Yutaka</au><au>Oida, Tomoki</au><au>Fukuda, Akira</au><au>Lee, Soonchil</au><au>Kobayashi, Eiichi</au><au>Kikuchi, Hikomitsu</au><au>Järvinen, Jarno</au><au>Vasiliev, Sergey</au><au>Mitsudo, Seitaro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Millimeter-Wave Band Resonator with Surface Coil for DNP–NMR Measurements</atitle><jtitle>Applied magnetic resonance</jtitle><stitle>Appl Magn Reson</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>52</volume><issue>4</issue><spage>317</spage><epage>335</epage><pages>317-335</pages><issn>0937-9347</issn><eissn>1613-7507</eissn><abstract>In this study, we developed a surface coil with a meanderline shape for nuclear magnetic resonance (NMR) combined with a Fabry–Pérot resonator (FPR) for millimeter-wave band electron-spin resonance (ESR). Our goal was to perform both NMR and ESR measurements with high sensitivity, in particular for thin samples, such as a silicon wafer. We measured NMR signals using a variety of meanderline coil shapes and determined the optimal turn number of the meanderline as well as the clearance length between the lines. The FPR consisted of spherical and flat mirrors, where the latter was constructed of a thin gold layer with the meanderline underneath. We observed that the meanderline provided high sensitivity when the gold layer was sufficiently thin at approximately 16 nm. We also measured millimeter-wave ESR from a thin sample of phosphorous-doped silicon with the developed FPR with the meanderline.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00723-021-01328-z</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-1978-0284</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0937-9347
ispartof Applied magnetic resonance, 2021-04, Vol.52 (4), p.317-335
issn 0937-9347
1613-7507
language eng
recordid cdi_proquest_journals_2917920950
source ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; ProQuest Central Korea; ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Atoms and Molecules in Strong Fields
Coils
Electron spin
Electrons
Gold
Laser Matter Interaction
Magnetic fields
Millimeter waves
NMR
Nuclear magnetic resonance
Organic Chemistry
Original Paper
Physical Chemistry
Physical properties
Physics
Physics and Astronomy
Printed circuit boards
Quantum computing
Resonators
Sensitivity
Silicon
Silicon wafers
Solid State Physics
Spectroscopy/Spectrometry
Spin resonance
Temperature
Terahertz Spectroscopy
title Millimeter-Wave Band Resonator with Surface Coil for DNP–NMR Measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T19%3A28%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Millimeter-Wave%20Band%20Resonator%20with%20Surface%20Coil%20for%20DNP%E2%80%93NMR%20Measurements&rft.jtitle=Applied%20magnetic%20resonance&rft.au=Ishikawa,%20Yuya&rft.date=2021-04-01&rft.volume=52&rft.issue=4&rft.spage=317&rft.epage=335&rft.pages=317-335&rft.issn=0937-9347&rft.eissn=1613-7507&rft_id=info:doi/10.1007/s00723-021-01328-z&rft_dat=%3Cproquest_cross%3E2917920950%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917920950&rft_id=info:pmid/&rfr_iscdi=true