High-performance capacitive humidity sensor with novel electrode and polyimide layer based on MEMS technology
A high-performance capacitive humidity sensor based on a newly designed electrode and a polyimide (PI) layer is presented in this paper. The humidity sensor consists of a substrate with a cavity, a bottom electrode, a PI sensing layer, and a comb-shaped top electrode with branches. The cavity struct...
Gespeichert in:
Veröffentlicht in: | Microsystem technologies : sensors, actuators, systems integration actuators, systems integration, 2010-12, Vol.16 (12), p.2017-2021 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2021 |
---|---|
container_issue | 12 |
container_start_page | 2017 |
container_title | Microsystem technologies : sensors, actuators, systems integration |
container_volume | 16 |
creator | Kim, Ji-Hong Hong, Sung-Min Moon, Byung-Moo Kim, Kunnyun |
description | A high-performance capacitive humidity sensor based on a newly designed electrode and a polyimide (PI) layer is presented in this paper. The humidity sensor consists of a substrate with a cavity, a bottom electrode, a PI sensing layer, and a comb-shaped top electrode with branches. The cavity structure of the substrate was formed to protect the top electrode. In order to enhance the performance of the sensor, the coated PI layer was etched by using an O
2
plasma asher in accordance with the top electrode passivation. After the PI etching, the humidity sensor showed a high sensitivity of 506 fF/% RH and a fast response time of less than 6 s, which is attributed to the increased contact area between the PI layer and moisture, and shortened moisture absorption path into the PI layer. Further characterizations were carried out to measure the effect of temperature, hysteresis, and stability. The humidity sensor showed a hysteresis of 2.05% RH, little temperature dependence, and stable capacitance value with maximum 0.28% error rate for 24 h. |
doi_str_mv | 10.1007/s00542-010-1139-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917920946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917920946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-9b7432f4e5fd87a141f5afff3e38295a07ca886409f28253bee9a0104710affd3</originalsourceid><addsrcrecordid>eNp1kM1OxCAURonRxPHnAdyRGJfoBdpSlsaoY6Jxoa4bhl5mMJ1SoaPp28tkjK5cEcL5Pu49hJxxuOQA6ioBlIVgwIFxLjWDPTLjhRSM12W9T2agi4opUNUhOUrpHXJG13JG1nO_XLEBowtxbXqL1JrBWD_6T6Srzdq3fpxowj6FSL_8uKJ9-MSOYod2jKFFavqWDqGbfGaRdmbCSBcmYUtDT59un17oiHbVhy4spxNy4EyX8PTnPCZvd7evN3P2-Hz_cHP9yKwsqpHphcqjuwJL19bK8IK70jjnJMpa6NKAsqauqwK0E7Uo5QJRm7x6oThkrpXH5HzXO8TwscE0Nu9hE_v8ZSM0V1psdWSK7ygbQ0oRXTNEvzZxajg0W6vNzmoD23u22kDOXPw0m2RN52J25tNvUEhZqVydObHjUn7qlxj_Jvi__Busc4gT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917920946</pqid></control><display><type>article</type><title>High-performance capacitive humidity sensor with novel electrode and polyimide layer based on MEMS technology</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Kim, Ji-Hong ; Hong, Sung-Min ; Moon, Byung-Moo ; Kim, Kunnyun</creator><creatorcontrib>Kim, Ji-Hong ; Hong, Sung-Min ; Moon, Byung-Moo ; Kim, Kunnyun</creatorcontrib><description>A high-performance capacitive humidity sensor based on a newly designed electrode and a polyimide (PI) layer is presented in this paper. The humidity sensor consists of a substrate with a cavity, a bottom electrode, a PI sensing layer, and a comb-shaped top electrode with branches. The cavity structure of the substrate was formed to protect the top electrode. In order to enhance the performance of the sensor, the coated PI layer was etched by using an O
2
plasma asher in accordance with the top electrode passivation. After the PI etching, the humidity sensor showed a high sensitivity of 506 fF/% RH and a fast response time of less than 6 s, which is attributed to the increased contact area between the PI layer and moisture, and shortened moisture absorption path into the PI layer. Further characterizations were carried out to measure the effect of temperature, hysteresis, and stability. The humidity sensor showed a hysteresis of 2.05% RH, little temperature dependence, and stable capacitance value with maximum 0.28% error rate for 24 h.</description><identifier>ISSN: 0946-7076</identifier><identifier>EISSN: 1432-1858</identifier><identifier>DOI: 10.1007/s00542-010-1139-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Applied sciences ; Electrodes ; Electronics ; Electronics and Microelectronics ; Engineering ; Exact sciences and technology ; Humidity ; Hysteresis ; Instrumentation ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Mechanical Engineering ; Mechanical engineering. Machine design ; Mechanical instruments, equipment and techniques ; Microelectronic fabrication (materials and surfaces technology) ; Micromechanical devices and systems ; Moisture ; Moisture absorption ; Nanotechnology ; Oxygen plasma ; Physics ; Plasma etching ; Precision engineering, watch making ; Process controls ; Response time ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Sensors ; Substrates ; Technical Paper ; Temperature dependence ; Temperature effects</subject><ispartof>Microsystem technologies : sensors, actuators, systems integration, 2010-12, Vol.16 (12), p.2017-2021</ispartof><rights>Springer-Verlag 2010</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag 2010.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-9b7432f4e5fd87a141f5afff3e38295a07ca886409f28253bee9a0104710affd3</citedby><cites>FETCH-LOGICAL-c346t-9b7432f4e5fd87a141f5afff3e38295a07ca886409f28253bee9a0104710affd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00542-010-1139-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917920946?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23367463$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Ji-Hong</creatorcontrib><creatorcontrib>Hong, Sung-Min</creatorcontrib><creatorcontrib>Moon, Byung-Moo</creatorcontrib><creatorcontrib>Kim, Kunnyun</creatorcontrib><title>High-performance capacitive humidity sensor with novel electrode and polyimide layer based on MEMS technology</title><title>Microsystem technologies : sensors, actuators, systems integration</title><addtitle>Microsyst Technol</addtitle><description>A high-performance capacitive humidity sensor based on a newly designed electrode and a polyimide (PI) layer is presented in this paper. The humidity sensor consists of a substrate with a cavity, a bottom electrode, a PI sensing layer, and a comb-shaped top electrode with branches. The cavity structure of the substrate was formed to protect the top electrode. In order to enhance the performance of the sensor, the coated PI layer was etched by using an O
2
plasma asher in accordance with the top electrode passivation. After the PI etching, the humidity sensor showed a high sensitivity of 506 fF/% RH and a fast response time of less than 6 s, which is attributed to the increased contact area between the PI layer and moisture, and shortened moisture absorption path into the PI layer. Further characterizations were carried out to measure the effect of temperature, hysteresis, and stability. The humidity sensor showed a hysteresis of 2.05% RH, little temperature dependence, and stable capacitance value with maximum 0.28% error rate for 24 h.</description><subject>Applied sciences</subject><subject>Electrodes</subject><subject>Electronics</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Exact sciences and technology</subject><subject>Humidity</subject><subject>Hysteresis</subject><subject>Instrumentation</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Mechanical Engineering</subject><subject>Mechanical engineering. Machine design</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Micromechanical devices and systems</subject><subject>Moisture</subject><subject>Moisture absorption</subject><subject>Nanotechnology</subject><subject>Oxygen plasma</subject><subject>Physics</subject><subject>Plasma etching</subject><subject>Precision engineering, watch making</subject><subject>Process controls</subject><subject>Response time</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Sensors</subject><subject>Substrates</subject><subject>Technical Paper</subject><subject>Temperature dependence</subject><subject>Temperature effects</subject><issn>0946-7076</issn><issn>1432-1858</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM1OxCAURonRxPHnAdyRGJfoBdpSlsaoY6Jxoa4bhl5mMJ1SoaPp28tkjK5cEcL5Pu49hJxxuOQA6ioBlIVgwIFxLjWDPTLjhRSM12W9T2agi4opUNUhOUrpHXJG13JG1nO_XLEBowtxbXqL1JrBWD_6T6Srzdq3fpxowj6FSL_8uKJ9-MSOYod2jKFFavqWDqGbfGaRdmbCSBcmYUtDT59un17oiHbVhy4spxNy4EyX8PTnPCZvd7evN3P2-Hz_cHP9yKwsqpHphcqjuwJL19bK8IK70jjnJMpa6NKAsqauqwK0E7Uo5QJRm7x6oThkrpXH5HzXO8TwscE0Nu9hE_v8ZSM0V1psdWSK7ygbQ0oRXTNEvzZxajg0W6vNzmoD23u22kDOXPw0m2RN52J25tNvUEhZqVydObHjUn7qlxj_Jvi__Busc4gT</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Kim, Ji-Hong</creator><creator>Hong, Sung-Min</creator><creator>Moon, Byung-Moo</creator><creator>Kim, Kunnyun</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20101201</creationdate><title>High-performance capacitive humidity sensor with novel electrode and polyimide layer based on MEMS technology</title><author>Kim, Ji-Hong ; Hong, Sung-Min ; Moon, Byung-Moo ; Kim, Kunnyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-9b7432f4e5fd87a141f5afff3e38295a07ca886409f28253bee9a0104710affd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Electrodes</topic><topic>Electronics</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Exact sciences and technology</topic><topic>Humidity</topic><topic>Hysteresis</topic><topic>Instrumentation</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Mechanical Engineering</topic><topic>Mechanical engineering. Machine design</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Micromechanical devices and systems</topic><topic>Moisture</topic><topic>Moisture absorption</topic><topic>Nanotechnology</topic><topic>Oxygen plasma</topic><topic>Physics</topic><topic>Plasma etching</topic><topic>Precision engineering, watch making</topic><topic>Process controls</topic><topic>Response time</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Sensors</topic><topic>Substrates</topic><topic>Technical Paper</topic><topic>Temperature dependence</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Ji-Hong</creatorcontrib><creatorcontrib>Hong, Sung-Min</creatorcontrib><creatorcontrib>Moon, Byung-Moo</creatorcontrib><creatorcontrib>Kim, Kunnyun</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Microsystem technologies : sensors, actuators, systems integration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Ji-Hong</au><au>Hong, Sung-Min</au><au>Moon, Byung-Moo</au><au>Kim, Kunnyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-performance capacitive humidity sensor with novel electrode and polyimide layer based on MEMS technology</atitle><jtitle>Microsystem technologies : sensors, actuators, systems integration</jtitle><stitle>Microsyst Technol</stitle><date>2010-12-01</date><risdate>2010</risdate><volume>16</volume><issue>12</issue><spage>2017</spage><epage>2021</epage><pages>2017-2021</pages><issn>0946-7076</issn><eissn>1432-1858</eissn><abstract>A high-performance capacitive humidity sensor based on a newly designed electrode and a polyimide (PI) layer is presented in this paper. The humidity sensor consists of a substrate with a cavity, a bottom electrode, a PI sensing layer, and a comb-shaped top electrode with branches. The cavity structure of the substrate was formed to protect the top electrode. In order to enhance the performance of the sensor, the coated PI layer was etched by using an O
2
plasma asher in accordance with the top electrode passivation. After the PI etching, the humidity sensor showed a high sensitivity of 506 fF/% RH and a fast response time of less than 6 s, which is attributed to the increased contact area between the PI layer and moisture, and shortened moisture absorption path into the PI layer. Further characterizations were carried out to measure the effect of temperature, hysteresis, and stability. The humidity sensor showed a hysteresis of 2.05% RH, little temperature dependence, and stable capacitance value with maximum 0.28% error rate for 24 h.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00542-010-1139-0</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0946-7076 |
ispartof | Microsystem technologies : sensors, actuators, systems integration, 2010-12, Vol.16 (12), p.2017-2021 |
issn | 0946-7076 1432-1858 |
language | eng |
recordid | cdi_proquest_journals_2917920946 |
source | SpringerLink Journals; ProQuest Central |
subjects | Applied sciences Electrodes Electronics Electronics and Microelectronics Engineering Exact sciences and technology Humidity Hysteresis Instrumentation Instruments, apparatus, components and techniques common to several branches of physics and astronomy Mechanical Engineering Mechanical engineering. Machine design Mechanical instruments, equipment and techniques Microelectronic fabrication (materials and surfaces technology) Micromechanical devices and systems Moisture Moisture absorption Nanotechnology Oxygen plasma Physics Plasma etching Precision engineering, watch making Process controls Response time Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Sensors Substrates Technical Paper Temperature dependence Temperature effects |
title | High-performance capacitive humidity sensor with novel electrode and polyimide layer based on MEMS technology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-performance%20capacitive%20humidity%20sensor%20with%20novel%20electrode%20and%20polyimide%20layer%20based%20on%20MEMS%20technology&rft.jtitle=Microsystem%20technologies%20:%20sensors,%20actuators,%20systems%20integration&rft.au=Kim,%20Ji-Hong&rft.date=2010-12-01&rft.volume=16&rft.issue=12&rft.spage=2017&rft.epage=2021&rft.pages=2017-2021&rft.issn=0946-7076&rft.eissn=1432-1858&rft_id=info:doi/10.1007/s00542-010-1139-0&rft_dat=%3Cproquest_cross%3E2917920946%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917920946&rft_id=info:pmid/&rfr_iscdi=true |