Duality evolution: an efficient approach to constraint handling in multi-objective particle swarm optimization

This paper proposes an efficient approach for constraint handling in multi-objective particle swarm optimization. The particles population is divided into two non-overlapping populations, named infeasible population and feasible population. The evolution process in each population is done independen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2017-12, Vol.21 (24), p.7251-7267
Hauptverfasser: Ebrahim Sorkhabi, Amin, Deljavan Amiri, Mehran, Khanteymoori, Ali Reza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7267
container_issue 24
container_start_page 7251
container_title Soft computing (Berlin, Germany)
container_volume 21
creator Ebrahim Sorkhabi, Amin
Deljavan Amiri, Mehran
Khanteymoori, Ali Reza
description This paper proposes an efficient approach for constraint handling in multi-objective particle swarm optimization. The particles population is divided into two non-overlapping populations, named infeasible population and feasible population. The evolution process in each population is done independent of the other one. The infeasible particles are evolved in the constraint space toward feasibility. During evolution process, if an infeasible particle becomes a feasible one, it migrates to feasible population. In a parallel process, the particles in feasible population are evolved in the objective space toward Pareto optimality. At each generation of multi-objective particle swarm optimization, a leader should be assigned to each particle to move toward it. In the proposed method, a different leader selection algorithm is proposed for each population. For feasible population, the leader is selected using a priority-based method in three levels and for infeasible population, a leader replacement method integrated by an elitism-based method is proposed. The proposed approach is tested on several constrained multi-objective optimization benchmark problems, and its results are compared with two popular state-of-the-art constraint handling multi-objective algorithms. The experimental results indicate that the proposed algorithm is highly competitive in solving the benchmark problems.
doi_str_mv 10.1007/s00500-016-2422-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917920739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917920739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-5d0036dd4729e2c6e9c793b729cc630c7c399e8e7062d9e016ec383def86fccd3</originalsourceid><addsrcrecordid>eNp1UMtOAyEUJUYTa_UD3JG4RhmYGYo7U59JEze6JpS509LMwAhMTf16qTVx5eo-ch73HoQuC3pdUCpuIqUVpYQWNWElY6Q6QpOi5JyIUsjjn54RUZf8FJ3FuKGUFaLiE-TuR93ZtMOw9d2YrHe3WDsMbWuNBZewHobgtVnj5LHxLqagbV6vtWs661bYOtyPXbLELzdgkt0CHnRI1nSA46cOPfZDsr390nvxc3TS6i7CxW-dovfHh7f5M1m8Pr3M7xbE8LpMpGoo5XXTlIJJYKYGaYTkyzwZU3NqhOFSwgwErVkjIX8Nhs94A-2sbo1p-BRdHXTz8R8jxKQ2fgwuWyomCyEZFVxmVHFAmeBjDNCqIdheh50qqNrHqg6xqmyg9rGqKnPYgRMz1q0g_Cn_T_oGrnJ84Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917920739</pqid></control><display><type>article</type><title>Duality evolution: an efficient approach to constraint handling in multi-objective particle swarm optimization</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Ebrahim Sorkhabi, Amin ; Deljavan Amiri, Mehran ; Khanteymoori, Ali Reza</creator><creatorcontrib>Ebrahim Sorkhabi, Amin ; Deljavan Amiri, Mehran ; Khanteymoori, Ali Reza</creatorcontrib><description>This paper proposes an efficient approach for constraint handling in multi-objective particle swarm optimization. The particles population is divided into two non-overlapping populations, named infeasible population and feasible population. The evolution process in each population is done independent of the other one. The infeasible particles are evolved in the constraint space toward feasibility. During evolution process, if an infeasible particle becomes a feasible one, it migrates to feasible population. In a parallel process, the particles in feasible population are evolved in the objective space toward Pareto optimality. At each generation of multi-objective particle swarm optimization, a leader should be assigned to each particle to move toward it. In the proposed method, a different leader selection algorithm is proposed for each population. For feasible population, the leader is selected using a priority-based method in three levels and for infeasible population, a leader replacement method integrated by an elitism-based method is proposed. The proposed approach is tested on several constrained multi-objective optimization benchmark problems, and its results are compared with two popular state-of-the-art constraint handling multi-objective algorithms. The experimental results indicate that the proposed algorithm is highly competitive in solving the benchmark problems.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-016-2422-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Benchmarks ; Business metrics ; Computational Intelligence ; Constraints ; Control ; Elitism ; Engineering ; Evolution ; Feasibility ; Foundations ; Genetic algorithms ; Handling ; Mathematical Logic and Foundations ; Mechatronics ; Methods ; Multiple objective analysis ; Optimization ; Pareto optimization ; Particle swarm optimization ; Robotics</subject><ispartof>Soft computing (Berlin, Germany), 2017-12, Vol.21 (24), p.7251-7267</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Springer-Verlag Berlin Heidelberg 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-5d0036dd4729e2c6e9c793b729cc630c7c399e8e7062d9e016ec383def86fccd3</citedby><cites>FETCH-LOGICAL-c364t-5d0036dd4729e2c6e9c793b729cc630c7c399e8e7062d9e016ec383def86fccd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-016-2422-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917920739?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Ebrahim Sorkhabi, Amin</creatorcontrib><creatorcontrib>Deljavan Amiri, Mehran</creatorcontrib><creatorcontrib>Khanteymoori, Ali Reza</creatorcontrib><title>Duality evolution: an efficient approach to constraint handling in multi-objective particle swarm optimization</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>This paper proposes an efficient approach for constraint handling in multi-objective particle swarm optimization. The particles population is divided into two non-overlapping populations, named infeasible population and feasible population. The evolution process in each population is done independent of the other one. The infeasible particles are evolved in the constraint space toward feasibility. During evolution process, if an infeasible particle becomes a feasible one, it migrates to feasible population. In a parallel process, the particles in feasible population are evolved in the objective space toward Pareto optimality. At each generation of multi-objective particle swarm optimization, a leader should be assigned to each particle to move toward it. In the proposed method, a different leader selection algorithm is proposed for each population. For feasible population, the leader is selected using a priority-based method in three levels and for infeasible population, a leader replacement method integrated by an elitism-based method is proposed. The proposed approach is tested on several constrained multi-objective optimization benchmark problems, and its results are compared with two popular state-of-the-art constraint handling multi-objective algorithms. The experimental results indicate that the proposed algorithm is highly competitive in solving the benchmark problems.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Benchmarks</subject><subject>Business metrics</subject><subject>Computational Intelligence</subject><subject>Constraints</subject><subject>Control</subject><subject>Elitism</subject><subject>Engineering</subject><subject>Evolution</subject><subject>Feasibility</subject><subject>Foundations</subject><subject>Genetic algorithms</subject><subject>Handling</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methods</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Pareto optimization</subject><subject>Particle swarm optimization</subject><subject>Robotics</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UMtOAyEUJUYTa_UD3JG4RhmYGYo7U59JEze6JpS509LMwAhMTf16qTVx5eo-ch73HoQuC3pdUCpuIqUVpYQWNWElY6Q6QpOi5JyIUsjjn54RUZf8FJ3FuKGUFaLiE-TuR93ZtMOw9d2YrHe3WDsMbWuNBZewHobgtVnj5LHxLqagbV6vtWs661bYOtyPXbLELzdgkt0CHnRI1nSA46cOPfZDsr390nvxc3TS6i7CxW-dovfHh7f5M1m8Pr3M7xbE8LpMpGoo5XXTlIJJYKYGaYTkyzwZU3NqhOFSwgwErVkjIX8Nhs94A-2sbo1p-BRdHXTz8R8jxKQ2fgwuWyomCyEZFVxmVHFAmeBjDNCqIdheh50qqNrHqg6xqmyg9rGqKnPYgRMz1q0g_Cn_T_oGrnJ84Q</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Ebrahim Sorkhabi, Amin</creator><creator>Deljavan Amiri, Mehran</creator><creator>Khanteymoori, Ali Reza</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20171201</creationdate><title>Duality evolution: an efficient approach to constraint handling in multi-objective particle swarm optimization</title><author>Ebrahim Sorkhabi, Amin ; Deljavan Amiri, Mehran ; Khanteymoori, Ali Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-5d0036dd4729e2c6e9c793b729cc630c7c399e8e7062d9e016ec383def86fccd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Benchmarks</topic><topic>Business metrics</topic><topic>Computational Intelligence</topic><topic>Constraints</topic><topic>Control</topic><topic>Elitism</topic><topic>Engineering</topic><topic>Evolution</topic><topic>Feasibility</topic><topic>Foundations</topic><topic>Genetic algorithms</topic><topic>Handling</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methods</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Pareto optimization</topic><topic>Particle swarm optimization</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ebrahim Sorkhabi, Amin</creatorcontrib><creatorcontrib>Deljavan Amiri, Mehran</creatorcontrib><creatorcontrib>Khanteymoori, Ali Reza</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ebrahim Sorkhabi, Amin</au><au>Deljavan Amiri, Mehran</au><au>Khanteymoori, Ali Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Duality evolution: an efficient approach to constraint handling in multi-objective particle swarm optimization</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>21</volume><issue>24</issue><spage>7251</spage><epage>7267</epage><pages>7251-7267</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>This paper proposes an efficient approach for constraint handling in multi-objective particle swarm optimization. The particles population is divided into two non-overlapping populations, named infeasible population and feasible population. The evolution process in each population is done independent of the other one. The infeasible particles are evolved in the constraint space toward feasibility. During evolution process, if an infeasible particle becomes a feasible one, it migrates to feasible population. In a parallel process, the particles in feasible population are evolved in the objective space toward Pareto optimality. At each generation of multi-objective particle swarm optimization, a leader should be assigned to each particle to move toward it. In the proposed method, a different leader selection algorithm is proposed for each population. For feasible population, the leader is selected using a priority-based method in three levels and for infeasible population, a leader replacement method integrated by an elitism-based method is proposed. The proposed approach is tested on several constrained multi-objective optimization benchmark problems, and its results are compared with two popular state-of-the-art constraint handling multi-objective algorithms. The experimental results indicate that the proposed algorithm is highly competitive in solving the benchmark problems.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-016-2422-5</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2017-12, Vol.21 (24), p.7251-7267
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2917920739
source SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Algorithms
Artificial Intelligence
Benchmarks
Business metrics
Computational Intelligence
Constraints
Control
Elitism
Engineering
Evolution
Feasibility
Foundations
Genetic algorithms
Handling
Mathematical Logic and Foundations
Mechatronics
Methods
Multiple objective analysis
Optimization
Pareto optimization
Particle swarm optimization
Robotics
title Duality evolution: an efficient approach to constraint handling in multi-objective particle swarm optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Duality%20evolution:%20an%20efficient%20approach%20to%20constraint%20handling%20in%20multi-objective%20particle%20swarm%20optimization&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Ebrahim%C2%A0Sorkhabi,%20Amin&rft.date=2017-12-01&rft.volume=21&rft.issue=24&rft.spage=7251&rft.epage=7267&rft.pages=7251-7267&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-016-2422-5&rft_dat=%3Cproquest_cross%3E2917920739%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917920739&rft_id=info:pmid/&rfr_iscdi=true