Robust controller design for systems with probabilistic uncertain parameters using multi-objective genetic programming

Optimal design of controllers without considering uncertainty in the plant dynamics can induce feedback instabilities and lead to obtaining infeasible controllers in practice. This paper presents a multi-objective evolutionary algorithm integrated with Monte Carlo simulations (MCS) to perform the op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2021, Vol.25 (1), p.233-249
Hauptverfasser: Mallipeddi, Rammohan, Gholaminezhad, Iman, Saeedi, Mohammad S., Assimi, Hirad, Jamali, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 249
container_issue 1
container_start_page 233
container_title Soft computing (Berlin, Germany)
container_volume 25
creator Mallipeddi, Rammohan
Gholaminezhad, Iman
Saeedi, Mohammad S.
Assimi, Hirad
Jamali, Ali
description Optimal design of controllers without considering uncertainty in the plant dynamics can induce feedback instabilities and lead to obtaining infeasible controllers in practice. This paper presents a multi-objective evolutionary algorithm integrated with Monte Carlo simulations (MCS) to perform the optimal stochastic design of robust controllers for uncertain time-delay systems. Each potential optimal solution represents a controller in the form of a transfer function with the optimal numerator and denominator polynomials. The proposed methodology uses genetic programming to evolve robust controllers. Using GP enables the algorithm to optimize the structure of the controller and tune the parameters in a holistic approach. The proposed methodology employs MCS to apply robust optimization and uses a new adaptive operator to balance exploration and exploitation in the search space. The performance of controllers is assessed in the closed-loop system with respect to three objective functions as (1) minimization of mean integral time absolute error (ITAE), (2) minimization of the standard deviation of ITAE and (3) minimization of maximum control effort. The new methodology is applied to the first-order and second-order systems with dead time. We evaluate the performance of obtained robust controllers with respect to the upper and lower bounds of step responses and control variables. We also perform a post-processing analysis considering load disturbance and external noise; we illustrate the robustness of the designed controllers by cumulative distribution functions of objective functions for different uncertainty levels. We show how the proposed methodology outperforms the state-of-the-art methods in the literature.
doi_str_mv 10.1007/s00500-020-05133-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917912620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917912620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-16dbb8b6d909ff6970676796348845a38c9a0307f7d6e6086af97f48ea0c16443</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXA9ejNJE0mSym-oCCIrkNmJhlT5lGTTG3_vWlHcOfics_iO-fAQeiawC0BEHcBYAGQQZ5uQSjNdidoRlgSggl5etR5Jjij5-gihDVATsSCztD2bSjHEHE19NEPbWs8rk1wTY_t4HHYh2i6gL9d_MQbP5S6dK0L0VV47Cvjo3Y93mivOxOND3gMrm9wN7bRZUO5NlV0W4Mb05uDJQU0Ce0Sc4nOrG6Dufr9c_Tx-PC-fM5Wr08vy_tVVlEiY0Z4XZZFyWsJ0louBXDBheSUFQVbaFpUUgMFYUXNDYeCayuFZYXRUBHOGJ2jmyk3dX-NJkS1Hkbfp0qVSyIkyXkOiconqvJDCN5YtfGu036vCKjDvmraV6V91XFftUsmOplCgvvG-L_of1w_X0qA1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917912620</pqid></control><display><type>article</type><title>Robust controller design for systems with probabilistic uncertain parameters using multi-objective genetic programming</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Mallipeddi, Rammohan ; Gholaminezhad, Iman ; Saeedi, Mohammad S. ; Assimi, Hirad ; Jamali, Ali</creator><creatorcontrib>Mallipeddi, Rammohan ; Gholaminezhad, Iman ; Saeedi, Mohammad S. ; Assimi, Hirad ; Jamali, Ali</creatorcontrib><description>Optimal design of controllers without considering uncertainty in the plant dynamics can induce feedback instabilities and lead to obtaining infeasible controllers in practice. This paper presents a multi-objective evolutionary algorithm integrated with Monte Carlo simulations (MCS) to perform the optimal stochastic design of robust controllers for uncertain time-delay systems. Each potential optimal solution represents a controller in the form of a transfer function with the optimal numerator and denominator polynomials. The proposed methodology uses genetic programming to evolve robust controllers. Using GP enables the algorithm to optimize the structure of the controller and tune the parameters in a holistic approach. The proposed methodology employs MCS to apply robust optimization and uses a new adaptive operator to balance exploration and exploitation in the search space. The performance of controllers is assessed in the closed-loop system with respect to three objective functions as (1) minimization of mean integral time absolute error (ITAE), (2) minimization of the standard deviation of ITAE and (3) minimization of maximum control effort. The new methodology is applied to the first-order and second-order systems with dead time. We evaluate the performance of obtained robust controllers with respect to the upper and lower bounds of step responses and control variables. We also perform a post-processing analysis considering load disturbance and external noise; we illustrate the robustness of the designed controllers by cumulative distribution functions of objective functions for different uncertainty levels. We show how the proposed methodology outperforms the state-of-the-art methods in the literature.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-020-05133-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Closed loops ; Computational Intelligence ; Control ; Control systems design ; Controllers ; Design optimization ; Distribution functions ; Engineering ; Evolutionary algorithms ; Feedback control ; Feedback control systems ; Genetic algorithms ; Lower bounds ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Methodology ; Monte Carlo simulation ; Multiple objective analysis ; Operators (mathematics) ; Optimization ; Optimization techniques ; Parameter uncertainty ; Performance evaluation ; Polynomials ; Robotics ; Robust control ; Sampling techniques ; Taguchi methods ; Time delay systems ; Transfer functions</subject><ispartof>Soft computing (Berlin, Germany), 2021, Vol.25 (1), p.233-249</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-16dbb8b6d909ff6970676796348845a38c9a0307f7d6e6086af97f48ea0c16443</citedby><cites>FETCH-LOGICAL-c319t-16dbb8b6d909ff6970676796348845a38c9a0307f7d6e6086af97f48ea0c16443</cites><orcidid>0000-0003-2592-6187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-020-05133-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917912620?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Mallipeddi, Rammohan</creatorcontrib><creatorcontrib>Gholaminezhad, Iman</creatorcontrib><creatorcontrib>Saeedi, Mohammad S.</creatorcontrib><creatorcontrib>Assimi, Hirad</creatorcontrib><creatorcontrib>Jamali, Ali</creatorcontrib><title>Robust controller design for systems with probabilistic uncertain parameters using multi-objective genetic programming</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>Optimal design of controllers without considering uncertainty in the plant dynamics can induce feedback instabilities and lead to obtaining infeasible controllers in practice. This paper presents a multi-objective evolutionary algorithm integrated with Monte Carlo simulations (MCS) to perform the optimal stochastic design of robust controllers for uncertain time-delay systems. Each potential optimal solution represents a controller in the form of a transfer function with the optimal numerator and denominator polynomials. The proposed methodology uses genetic programming to evolve robust controllers. Using GP enables the algorithm to optimize the structure of the controller and tune the parameters in a holistic approach. The proposed methodology employs MCS to apply robust optimization and uses a new adaptive operator to balance exploration and exploitation in the search space. The performance of controllers is assessed in the closed-loop system with respect to three objective functions as (1) minimization of mean integral time absolute error (ITAE), (2) minimization of the standard deviation of ITAE and (3) minimization of maximum control effort. The new methodology is applied to the first-order and second-order systems with dead time. We evaluate the performance of obtained robust controllers with respect to the upper and lower bounds of step responses and control variables. We also perform a post-processing analysis considering load disturbance and external noise; we illustrate the robustness of the designed controllers by cumulative distribution functions of objective functions for different uncertainty levels. We show how the proposed methodology outperforms the state-of-the-art methods in the literature.</description><subject>Artificial Intelligence</subject><subject>Closed loops</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Design optimization</subject><subject>Distribution functions</subject><subject>Engineering</subject><subject>Evolutionary algorithms</subject><subject>Feedback control</subject><subject>Feedback control systems</subject><subject>Genetic algorithms</subject><subject>Lower bounds</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Methodology</subject><subject>Monte Carlo simulation</subject><subject>Multiple objective analysis</subject><subject>Operators (mathematics)</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Parameter uncertainty</subject><subject>Performance evaluation</subject><subject>Polynomials</subject><subject>Robotics</subject><subject>Robust control</subject><subject>Sampling techniques</subject><subject>Taguchi methods</subject><subject>Time delay systems</subject><subject>Transfer functions</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXA9ejNJE0mSym-oCCIrkNmJhlT5lGTTG3_vWlHcOfics_iO-fAQeiawC0BEHcBYAGQQZ5uQSjNdidoRlgSggl5etR5Jjij5-gihDVATsSCztD2bSjHEHE19NEPbWs8rk1wTY_t4HHYh2i6gL9d_MQbP5S6dK0L0VV47Cvjo3Y93mivOxOND3gMrm9wN7bRZUO5NlV0W4Mb05uDJQU0Ce0Sc4nOrG6Dufr9c_Tx-PC-fM5Wr08vy_tVVlEiY0Z4XZZFyWsJ0louBXDBheSUFQVbaFpUUgMFYUXNDYeCayuFZYXRUBHOGJ2jmyk3dX-NJkS1Hkbfp0qVSyIkyXkOiconqvJDCN5YtfGu036vCKjDvmraV6V91XFftUsmOplCgvvG-L_of1w_X0qA1g</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Mallipeddi, Rammohan</creator><creator>Gholaminezhad, Iman</creator><creator>Saeedi, Mohammad S.</creator><creator>Assimi, Hirad</creator><creator>Jamali, Ali</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-2592-6187</orcidid></search><sort><creationdate>2021</creationdate><title>Robust controller design for systems with probabilistic uncertain parameters using multi-objective genetic programming</title><author>Mallipeddi, Rammohan ; Gholaminezhad, Iman ; Saeedi, Mohammad S. ; Assimi, Hirad ; Jamali, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-16dbb8b6d909ff6970676796348845a38c9a0307f7d6e6086af97f48ea0c16443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Closed loops</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Design optimization</topic><topic>Distribution functions</topic><topic>Engineering</topic><topic>Evolutionary algorithms</topic><topic>Feedback control</topic><topic>Feedback control systems</topic><topic>Genetic algorithms</topic><topic>Lower bounds</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Methodology</topic><topic>Monte Carlo simulation</topic><topic>Multiple objective analysis</topic><topic>Operators (mathematics)</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Parameter uncertainty</topic><topic>Performance evaluation</topic><topic>Polynomials</topic><topic>Robotics</topic><topic>Robust control</topic><topic>Sampling techniques</topic><topic>Taguchi methods</topic><topic>Time delay systems</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mallipeddi, Rammohan</creatorcontrib><creatorcontrib>Gholaminezhad, Iman</creatorcontrib><creatorcontrib>Saeedi, Mohammad S.</creatorcontrib><creatorcontrib>Assimi, Hirad</creatorcontrib><creatorcontrib>Jamali, Ali</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mallipeddi, Rammohan</au><au>Gholaminezhad, Iman</au><au>Saeedi, Mohammad S.</au><au>Assimi, Hirad</au><au>Jamali, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust controller design for systems with probabilistic uncertain parameters using multi-objective genetic programming</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2021</date><risdate>2021</risdate><volume>25</volume><issue>1</issue><spage>233</spage><epage>249</epage><pages>233-249</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>Optimal design of controllers without considering uncertainty in the plant dynamics can induce feedback instabilities and lead to obtaining infeasible controllers in practice. This paper presents a multi-objective evolutionary algorithm integrated with Monte Carlo simulations (MCS) to perform the optimal stochastic design of robust controllers for uncertain time-delay systems. Each potential optimal solution represents a controller in the form of a transfer function with the optimal numerator and denominator polynomials. The proposed methodology uses genetic programming to evolve robust controllers. Using GP enables the algorithm to optimize the structure of the controller and tune the parameters in a holistic approach. The proposed methodology employs MCS to apply robust optimization and uses a new adaptive operator to balance exploration and exploitation in the search space. The performance of controllers is assessed in the closed-loop system with respect to three objective functions as (1) minimization of mean integral time absolute error (ITAE), (2) minimization of the standard deviation of ITAE and (3) minimization of maximum control effort. The new methodology is applied to the first-order and second-order systems with dead time. We evaluate the performance of obtained robust controllers with respect to the upper and lower bounds of step responses and control variables. We also perform a post-processing analysis considering load disturbance and external noise; we illustrate the robustness of the designed controllers by cumulative distribution functions of objective functions for different uncertainty levels. We show how the proposed methodology outperforms the state-of-the-art methods in the literature.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-020-05133-x</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2592-6187</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2021, Vol.25 (1), p.233-249
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2917912620
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Artificial Intelligence
Closed loops
Computational Intelligence
Control
Control systems design
Controllers
Design optimization
Distribution functions
Engineering
Evolutionary algorithms
Feedback control
Feedback control systems
Genetic algorithms
Lower bounds
Mathematical Logic and Foundations
Mechatronics
Methodologies and Application
Methodology
Monte Carlo simulation
Multiple objective analysis
Operators (mathematics)
Optimization
Optimization techniques
Parameter uncertainty
Performance evaluation
Polynomials
Robotics
Robust control
Sampling techniques
Taguchi methods
Time delay systems
Transfer functions
title Robust controller design for systems with probabilistic uncertain parameters using multi-objective genetic programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A05%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20controller%20design%20for%20systems%20with%20probabilistic%20uncertain%20parameters%20using%20multi-objective%20genetic%20programming&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Mallipeddi,%20Rammohan&rft.date=2021&rft.volume=25&rft.issue=1&rft.spage=233&rft.epage=249&rft.pages=233-249&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-020-05133-x&rft_dat=%3Cproquest_cross%3E2917912620%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917912620&rft_id=info:pmid/&rfr_iscdi=true