Multiobjective local search for community detection in networks
Detecting communities is of great importance in the study of complex networks. In this study, the community detection problem is formulated as a multiobjective optimization problem; then a local search-based multiobjective optimization algorithm is proposed. In the proposed algorithm, different obje...
Gespeichert in:
Veröffentlicht in: | Soft computing (Berlin, Germany) Germany), 2016-08, Vol.20 (8), p.3273-3282 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3282 |
---|---|
container_issue | 8 |
container_start_page | 3273 |
container_title | Soft computing (Berlin, Germany) |
container_volume | 20 |
creator | Zhou, Yalan Wang, Jiahai Luo, Ningbo Zhang, Zizhen |
description | Detecting communities is of great importance in the study of complex networks. In this study, the community detection problem is formulated as a multiobjective optimization problem; then a local search-based multiobjective optimization algorithm is proposed. In the proposed algorithm, different objectivewise local searches are designed for different objectives. These simple but effective local searches cooperate to simultaneously optimize two objectives. Extensive experiments on both synthetic and real-world networks show that the proposed algorithm obtains better or competitive results compared with existing state-of-the-art algorithms. |
doi_str_mv | 10.1007/s00500-015-1706-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917907410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917907410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-c6ea6fbf930ad553e98b6a87067ecbfe99c8abdb2ac69d121c472126ffbdd6333</originalsourceid><addsrcrecordid>eNp1kE1PxCAQhonRxHX1B3gj8YwOUGA5GbPxK9F40TOhFLRrt6xANfvv7VoTT55mDs_7zuRB6JTCOQVQFxlAABCgglAFkog9NKMV50RVSu__7IwoWfFDdJTzCoBRJfgMXT4OXWljvfKutJ8ed9HZDmdvk3vDISbs4no99G3Z4saXHRR73Pa49-Urpvd8jA6C7bI_-Z1z9HJz_by8Iw9Pt_fLqwfiOJWFOOmtDHXQHGwjBPd6UUu7GD9V3tXBa-0Wtm5qZp3UDWXUVYpRJkOom0ZyzufobOrdpPgx-FzMKg6pH08apqnSoCoKI0UnyqWYc_LBbFK7tmlrKJidJzN5MqMns_NkxJhhUyaPbP_q01_z_6Fvr_BrrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917907410</pqid></control><display><type>article</type><title>Multiobjective local search for community detection in networks</title><source>SpringerNature Complete Journals</source><source>AUTh Library subscriptions: ProQuest Central</source><source>ProQuest Central UK/Ireland</source><creator>Zhou, Yalan ; Wang, Jiahai ; Luo, Ningbo ; Zhang, Zizhen</creator><creatorcontrib>Zhou, Yalan ; Wang, Jiahai ; Luo, Ningbo ; Zhang, Zizhen</creatorcontrib><description>Detecting communities is of great importance in the study of complex networks. In this study, the community detection problem is formulated as a multiobjective optimization problem; then a local search-based multiobjective optimization algorithm is proposed. In the proposed algorithm, different objectivewise local searches are designed for different objectives. These simple but effective local searches cooperate to simultaneously optimize two objectives. Extensive experiments on both synthetic and real-world networks show that the proposed algorithm obtains better or competitive results compared with existing state-of-the-art algorithms.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-015-1706-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Archives & records ; Artificial Intelligence ; Computational Intelligence ; Control ; Decomposition ; Engineering ; Genetic algorithms ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Modularity ; Multiple objective analysis ; Networks ; Optimization ; Optimization algorithms ; Robotics ; Searching ; Social networks</subject><ispartof>Soft computing (Berlin, Germany), 2016-08, Vol.20 (8), p.3273-3282</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Springer-Verlag Berlin Heidelberg 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-c6ea6fbf930ad553e98b6a87067ecbfe99c8abdb2ac69d121c472126ffbdd6333</citedby><cites>FETCH-LOGICAL-c316t-c6ea6fbf930ad553e98b6a87067ecbfe99c8abdb2ac69d121c472126ffbdd6333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-015-1706-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917907410?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51297,64361,64365,72215</link.rule.ids></links><search><creatorcontrib>Zhou, Yalan</creatorcontrib><creatorcontrib>Wang, Jiahai</creatorcontrib><creatorcontrib>Luo, Ningbo</creatorcontrib><creatorcontrib>Zhang, Zizhen</creatorcontrib><title>Multiobjective local search for community detection in networks</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>Detecting communities is of great importance in the study of complex networks. In this study, the community detection problem is formulated as a multiobjective optimization problem; then a local search-based multiobjective optimization algorithm is proposed. In the proposed algorithm, different objectivewise local searches are designed for different objectives. These simple but effective local searches cooperate to simultaneously optimize two objectives. Extensive experiments on both synthetic and real-world networks show that the proposed algorithm obtains better or competitive results compared with existing state-of-the-art algorithms.</description><subject>Algorithms</subject><subject>Archives & records</subject><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Decomposition</subject><subject>Engineering</subject><subject>Genetic algorithms</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Modularity</subject><subject>Multiple objective analysis</subject><subject>Networks</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Robotics</subject><subject>Searching</subject><subject>Social networks</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1PxCAQhonRxHX1B3gj8YwOUGA5GbPxK9F40TOhFLRrt6xANfvv7VoTT55mDs_7zuRB6JTCOQVQFxlAABCgglAFkog9NKMV50RVSu__7IwoWfFDdJTzCoBRJfgMXT4OXWljvfKutJ8ed9HZDmdvk3vDISbs4no99G3Z4saXHRR73Pa49-Urpvd8jA6C7bI_-Z1z9HJz_by8Iw9Pt_fLqwfiOJWFOOmtDHXQHGwjBPd6UUu7GD9V3tXBa-0Wtm5qZp3UDWXUVYpRJkOom0ZyzufobOrdpPgx-FzMKg6pH08apqnSoCoKI0UnyqWYc_LBbFK7tmlrKJidJzN5MqMns_NkxJhhUyaPbP_q01_z_6Fvr_BrrQ</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Zhou, Yalan</creator><creator>Wang, Jiahai</creator><creator>Luo, Ningbo</creator><creator>Zhang, Zizhen</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20160801</creationdate><title>Multiobjective local search for community detection in networks</title><author>Zhou, Yalan ; Wang, Jiahai ; Luo, Ningbo ; Zhang, Zizhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-c6ea6fbf930ad553e98b6a87067ecbfe99c8abdb2ac69d121c472126ffbdd6333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Archives & records</topic><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Decomposition</topic><topic>Engineering</topic><topic>Genetic algorithms</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Modularity</topic><topic>Multiple objective analysis</topic><topic>Networks</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Robotics</topic><topic>Searching</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yalan</creatorcontrib><creatorcontrib>Wang, Jiahai</creatorcontrib><creatorcontrib>Luo, Ningbo</creatorcontrib><creatorcontrib>Zhang, Zizhen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yalan</au><au>Wang, Jiahai</au><au>Luo, Ningbo</au><au>Zhang, Zizhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiobjective local search for community detection in networks</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2016-08-01</date><risdate>2016</risdate><volume>20</volume><issue>8</issue><spage>3273</spage><epage>3282</epage><pages>3273-3282</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>Detecting communities is of great importance in the study of complex networks. In this study, the community detection problem is formulated as a multiobjective optimization problem; then a local search-based multiobjective optimization algorithm is proposed. In the proposed algorithm, different objectivewise local searches are designed for different objectives. These simple but effective local searches cooperate to simultaneously optimize two objectives. Extensive experiments on both synthetic and real-world networks show that the proposed algorithm obtains better or competitive results compared with existing state-of-the-art algorithms.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-015-1706-5</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-7643 |
ispartof | Soft computing (Berlin, Germany), 2016-08, Vol.20 (8), p.3273-3282 |
issn | 1432-7643 1433-7479 |
language | eng |
recordid | cdi_proquest_journals_2917907410 |
source | SpringerNature Complete Journals; AUTh Library subscriptions: ProQuest Central; ProQuest Central UK/Ireland |
subjects | Algorithms Archives & records Artificial Intelligence Computational Intelligence Control Decomposition Engineering Genetic algorithms Mathematical Logic and Foundations Mechatronics Methodologies and Application Modularity Multiple objective analysis Networks Optimization Optimization algorithms Robotics Searching Social networks |
title | Multiobjective local search for community detection in networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A01%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiobjective%20local%20search%20for%20community%20detection%20in%20networks&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Zhou,%20Yalan&rft.date=2016-08-01&rft.volume=20&rft.issue=8&rft.spage=3273&rft.epage=3282&rft.pages=3273-3282&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-015-1706-5&rft_dat=%3Cproquest_cross%3E2917907410%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917907410&rft_id=info:pmid/&rfr_iscdi=true |