Multiobjective local search for community detection in networks

Detecting communities is of great importance in the study of complex networks. In this study, the community detection problem is formulated as a multiobjective optimization problem; then a local search-based multiobjective optimization algorithm is proposed. In the proposed algorithm, different obje...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2016-08, Vol.20 (8), p.3273-3282
Hauptverfasser: Zhou, Yalan, Wang, Jiahai, Luo, Ningbo, Zhang, Zizhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3282
container_issue 8
container_start_page 3273
container_title Soft computing (Berlin, Germany)
container_volume 20
creator Zhou, Yalan
Wang, Jiahai
Luo, Ningbo
Zhang, Zizhen
description Detecting communities is of great importance in the study of complex networks. In this study, the community detection problem is formulated as a multiobjective optimization problem; then a local search-based multiobjective optimization algorithm is proposed. In the proposed algorithm, different objectivewise local searches are designed for different objectives. These simple but effective local searches cooperate to simultaneously optimize two objectives. Extensive experiments on both synthetic and real-world networks show that the proposed algorithm obtains better or competitive results compared with existing state-of-the-art algorithms.
doi_str_mv 10.1007/s00500-015-1706-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917907410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917907410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-c6ea6fbf930ad553e98b6a87067ecbfe99c8abdb2ac69d121c472126ffbdd6333</originalsourceid><addsrcrecordid>eNp1kE1PxCAQhonRxHX1B3gj8YwOUGA5GbPxK9F40TOhFLRrt6xANfvv7VoTT55mDs_7zuRB6JTCOQVQFxlAABCgglAFkog9NKMV50RVSu__7IwoWfFDdJTzCoBRJfgMXT4OXWljvfKutJ8ed9HZDmdvk3vDISbs4no99G3Z4saXHRR73Pa49-Urpvd8jA6C7bI_-Z1z9HJz_by8Iw9Pt_fLqwfiOJWFOOmtDHXQHGwjBPd6UUu7GD9V3tXBa-0Wtm5qZp3UDWXUVYpRJkOom0ZyzufobOrdpPgx-FzMKg6pH08apqnSoCoKI0UnyqWYc_LBbFK7tmlrKJidJzN5MqMns_NkxJhhUyaPbP_q01_z_6Fvr_BrrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917907410</pqid></control><display><type>article</type><title>Multiobjective local search for community detection in networks</title><source>SpringerNature Complete Journals</source><source>AUTh Library subscriptions: ProQuest Central</source><source>ProQuest Central UK/Ireland</source><creator>Zhou, Yalan ; Wang, Jiahai ; Luo, Ningbo ; Zhang, Zizhen</creator><creatorcontrib>Zhou, Yalan ; Wang, Jiahai ; Luo, Ningbo ; Zhang, Zizhen</creatorcontrib><description>Detecting communities is of great importance in the study of complex networks. In this study, the community detection problem is formulated as a multiobjective optimization problem; then a local search-based multiobjective optimization algorithm is proposed. In the proposed algorithm, different objectivewise local searches are designed for different objectives. These simple but effective local searches cooperate to simultaneously optimize two objectives. Extensive experiments on both synthetic and real-world networks show that the proposed algorithm obtains better or competitive results compared with existing state-of-the-art algorithms.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-015-1706-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Archives &amp; records ; Artificial Intelligence ; Computational Intelligence ; Control ; Decomposition ; Engineering ; Genetic algorithms ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Modularity ; Multiple objective analysis ; Networks ; Optimization ; Optimization algorithms ; Robotics ; Searching ; Social networks</subject><ispartof>Soft computing (Berlin, Germany), 2016-08, Vol.20 (8), p.3273-3282</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Springer-Verlag Berlin Heidelberg 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-c6ea6fbf930ad553e98b6a87067ecbfe99c8abdb2ac69d121c472126ffbdd6333</citedby><cites>FETCH-LOGICAL-c316t-c6ea6fbf930ad553e98b6a87067ecbfe99c8abdb2ac69d121c472126ffbdd6333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-015-1706-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917907410?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51297,64361,64365,72215</link.rule.ids></links><search><creatorcontrib>Zhou, Yalan</creatorcontrib><creatorcontrib>Wang, Jiahai</creatorcontrib><creatorcontrib>Luo, Ningbo</creatorcontrib><creatorcontrib>Zhang, Zizhen</creatorcontrib><title>Multiobjective local search for community detection in networks</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>Detecting communities is of great importance in the study of complex networks. In this study, the community detection problem is formulated as a multiobjective optimization problem; then a local search-based multiobjective optimization algorithm is proposed. In the proposed algorithm, different objectivewise local searches are designed for different objectives. These simple but effective local searches cooperate to simultaneously optimize two objectives. Extensive experiments on both synthetic and real-world networks show that the proposed algorithm obtains better or competitive results compared with existing state-of-the-art algorithms.</description><subject>Algorithms</subject><subject>Archives &amp; records</subject><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Decomposition</subject><subject>Engineering</subject><subject>Genetic algorithms</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Modularity</subject><subject>Multiple objective analysis</subject><subject>Networks</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Robotics</subject><subject>Searching</subject><subject>Social networks</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1PxCAQhonRxHX1B3gj8YwOUGA5GbPxK9F40TOhFLRrt6xANfvv7VoTT55mDs_7zuRB6JTCOQVQFxlAABCgglAFkog9NKMV50RVSu__7IwoWfFDdJTzCoBRJfgMXT4OXWljvfKutJ8ed9HZDmdvk3vDISbs4no99G3Z4saXHRR73Pa49-Urpvd8jA6C7bI_-Z1z9HJz_by8Iw9Pt_fLqwfiOJWFOOmtDHXQHGwjBPd6UUu7GD9V3tXBa-0Wtm5qZp3UDWXUVYpRJkOom0ZyzufobOrdpPgx-FzMKg6pH08apqnSoCoKI0UnyqWYc_LBbFK7tmlrKJidJzN5MqMns_NkxJhhUyaPbP_q01_z_6Fvr_BrrQ</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Zhou, Yalan</creator><creator>Wang, Jiahai</creator><creator>Luo, Ningbo</creator><creator>Zhang, Zizhen</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20160801</creationdate><title>Multiobjective local search for community detection in networks</title><author>Zhou, Yalan ; Wang, Jiahai ; Luo, Ningbo ; Zhang, Zizhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-c6ea6fbf930ad553e98b6a87067ecbfe99c8abdb2ac69d121c472126ffbdd6333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Archives &amp; records</topic><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Decomposition</topic><topic>Engineering</topic><topic>Genetic algorithms</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Modularity</topic><topic>Multiple objective analysis</topic><topic>Networks</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Robotics</topic><topic>Searching</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yalan</creatorcontrib><creatorcontrib>Wang, Jiahai</creatorcontrib><creatorcontrib>Luo, Ningbo</creatorcontrib><creatorcontrib>Zhang, Zizhen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yalan</au><au>Wang, Jiahai</au><au>Luo, Ningbo</au><au>Zhang, Zizhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiobjective local search for community detection in networks</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2016-08-01</date><risdate>2016</risdate><volume>20</volume><issue>8</issue><spage>3273</spage><epage>3282</epage><pages>3273-3282</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>Detecting communities is of great importance in the study of complex networks. In this study, the community detection problem is formulated as a multiobjective optimization problem; then a local search-based multiobjective optimization algorithm is proposed. In the proposed algorithm, different objectivewise local searches are designed for different objectives. These simple but effective local searches cooperate to simultaneously optimize two objectives. Extensive experiments on both synthetic and real-world networks show that the proposed algorithm obtains better or competitive results compared with existing state-of-the-art algorithms.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-015-1706-5</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2016-08, Vol.20 (8), p.3273-3282
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2917907410
source SpringerNature Complete Journals; AUTh Library subscriptions: ProQuest Central; ProQuest Central UK/Ireland
subjects Algorithms
Archives & records
Artificial Intelligence
Computational Intelligence
Control
Decomposition
Engineering
Genetic algorithms
Mathematical Logic and Foundations
Mechatronics
Methodologies and Application
Modularity
Multiple objective analysis
Networks
Optimization
Optimization algorithms
Robotics
Searching
Social networks
title Multiobjective local search for community detection in networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A01%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiobjective%20local%20search%20for%20community%20detection%20in%20networks&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Zhou,%20Yalan&rft.date=2016-08-01&rft.volume=20&rft.issue=8&rft.spage=3273&rft.epage=3282&rft.pages=3273-3282&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-015-1706-5&rft_dat=%3Cproquest_cross%3E2917907410%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917907410&rft_id=info:pmid/&rfr_iscdi=true