Research on key issues of gesture recognition for artificial intelligence

Gesture recognition has become a hot spot in the direction of artificial intelligence and has great research significance. At present, some classical algorithms, such as the neural network method and the hidden Markov method, have the disadvantages of large computational complexity and long training...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2020-04, Vol.24 (8), p.5795-5803
Hauptverfasser: Mo, Taiping, Sun, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5803
container_issue 8
container_start_page 5795
container_title Soft computing (Berlin, Germany)
container_volume 24
creator Mo, Taiping
Sun, Peng
description Gesture recognition has become a hot spot in the direction of artificial intelligence and has great research significance. At present, some classical algorithms, such as the neural network method and the hidden Markov method, have the disadvantages of large computational complexity and long training time. This paper proposes the support vector machine (SVM) algorithm to realize gesture recognition. In order to make the recognition more accurate, SVM is combined with the principal component analysis (PCA) algorithm, performs the dimensionality reduction on the gesture image to form the PCA + SVM algorithm for gesture recognition. At the same time, a new dynamic gesture recognition processing method is proposed, and its effectiveness is proved by various methods. Using open-source computer vision library (OPENCV), the algorithm is simulated on visual studio 2015 environment. The results show that the algorithm has an excellent recognition effect.
doi_str_mv 10.1007/s00500-019-04342-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917906570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917906570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ac1735cac6125e5f524cd98a69783700b1997e05008cc3442af1916b573d9c9b3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgOnpymzRLKV4KBUF0HdL0zJg6ztRkuujbm3YEd67OWXz_uXyEXHO45QDmLgNoAAbcMlBSCSZPyIQrKZlRxp4ee8FMpeQ5uch5AyC40XJCFq-Y0afwQfuOfuKexpx3mGlf0wbzsEtIE4a-6eIQC1H3ifo0xDqG6FsauwHbNjbYBbwkZ7VvM1791il5f3x4mz-z5cvTYn6_ZEFyOzAfuJE6-FBxoVHXWqiwtjNfWTOTBmDFrTV4-GYWglRK-JpbXq20kWsb7EpOyc04d5v673Lq4Db9LnVlpROWGwuVNlAoMVIh9TknrN02xS-f9o6DOyhzozJXlLmjMidLSI6hXOCuwfQ3-p_UD0PLbeE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917906570</pqid></control><display><type>article</type><title>Research on key issues of gesture recognition for artificial intelligence</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Mo, Taiping ; Sun, Peng</creator><creatorcontrib>Mo, Taiping ; Sun, Peng</creatorcontrib><description>Gesture recognition has become a hot spot in the direction of artificial intelligence and has great research significance. At present, some classical algorithms, such as the neural network method and the hidden Markov method, have the disadvantages of large computational complexity and long training time. This paper proposes the support vector machine (SVM) algorithm to realize gesture recognition. In order to make the recognition more accurate, SVM is combined with the principal component analysis (PCA) algorithm, performs the dimensionality reduction on the gesture image to form the PCA + SVM algorithm for gesture recognition. At the same time, a new dynamic gesture recognition processing method is proposed, and its effectiveness is proved by various methods. Using open-source computer vision library (OPENCV), the algorithm is simulated on visual studio 2015 environment. The results show that the algorithm has an excellent recognition effect.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-019-04342-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Computational Intelligence ; Computer vision ; Control ; Engineering ; Focus ; Gesture recognition ; Mathematical Logic and Foundations ; Mechatronics ; Neural networks ; Principal components analysis ; Robotics ; Support vector machines ; Visual programming languages</subject><ispartof>Soft computing (Berlin, Germany), 2020-04, Vol.24 (8), p.5795-5803</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ac1735cac6125e5f524cd98a69783700b1997e05008cc3442af1916b573d9c9b3</citedby><cites>FETCH-LOGICAL-c319t-ac1735cac6125e5f524cd98a69783700b1997e05008cc3442af1916b573d9c9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-019-04342-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917906570?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72240</link.rule.ids></links><search><creatorcontrib>Mo, Taiping</creatorcontrib><creatorcontrib>Sun, Peng</creatorcontrib><title>Research on key issues of gesture recognition for artificial intelligence</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>Gesture recognition has become a hot spot in the direction of artificial intelligence and has great research significance. At present, some classical algorithms, such as the neural network method and the hidden Markov method, have the disadvantages of large computational complexity and long training time. This paper proposes the support vector machine (SVM) algorithm to realize gesture recognition. In order to make the recognition more accurate, SVM is combined with the principal component analysis (PCA) algorithm, performs the dimensionality reduction on the gesture image to form the PCA + SVM algorithm for gesture recognition. At the same time, a new dynamic gesture recognition processing method is proposed, and its effectiveness is proved by various methods. Using open-source computer vision library (OPENCV), the algorithm is simulated on visual studio 2015 environment. The results show that the algorithm has an excellent recognition effect.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Computer vision</subject><subject>Control</subject><subject>Engineering</subject><subject>Focus</subject><subject>Gesture recognition</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Neural networks</subject><subject>Principal components analysis</subject><subject>Robotics</subject><subject>Support vector machines</subject><subject>Visual programming languages</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtKAzEUhoMoWKsv4CrgOnpymzRLKV4KBUF0HdL0zJg6ztRkuujbm3YEd67OWXz_uXyEXHO45QDmLgNoAAbcMlBSCSZPyIQrKZlRxp4ee8FMpeQ5uch5AyC40XJCFq-Y0afwQfuOfuKexpx3mGlf0wbzsEtIE4a-6eIQC1H3ifo0xDqG6FsauwHbNjbYBbwkZ7VvM1791il5f3x4mz-z5cvTYn6_ZEFyOzAfuJE6-FBxoVHXWqiwtjNfWTOTBmDFrTV4-GYWglRK-JpbXq20kWsb7EpOyc04d5v673Lq4Db9LnVlpROWGwuVNlAoMVIh9TknrN02xS-f9o6DOyhzozJXlLmjMidLSI6hXOCuwfQ3-p_UD0PLbeE</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Mo, Taiping</creator><creator>Sun, Peng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20200401</creationdate><title>Research on key issues of gesture recognition for artificial intelligence</title><author>Mo, Taiping ; Sun, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ac1735cac6125e5f524cd98a69783700b1997e05008cc3442af1916b573d9c9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Computer vision</topic><topic>Control</topic><topic>Engineering</topic><topic>Focus</topic><topic>Gesture recognition</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Neural networks</topic><topic>Principal components analysis</topic><topic>Robotics</topic><topic>Support vector machines</topic><topic>Visual programming languages</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mo, Taiping</creatorcontrib><creatorcontrib>Sun, Peng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mo, Taiping</au><au>Sun, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on key issues of gesture recognition for artificial intelligence</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>24</volume><issue>8</issue><spage>5795</spage><epage>5803</epage><pages>5795-5803</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>Gesture recognition has become a hot spot in the direction of artificial intelligence and has great research significance. At present, some classical algorithms, such as the neural network method and the hidden Markov method, have the disadvantages of large computational complexity and long training time. This paper proposes the support vector machine (SVM) algorithm to realize gesture recognition. In order to make the recognition more accurate, SVM is combined with the principal component analysis (PCA) algorithm, performs the dimensionality reduction on the gesture image to form the PCA + SVM algorithm for gesture recognition. At the same time, a new dynamic gesture recognition processing method is proposed, and its effectiveness is proved by various methods. Using open-source computer vision library (OPENCV), the algorithm is simulated on visual studio 2015 environment. The results show that the algorithm has an excellent recognition effect.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-019-04342-3</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2020-04, Vol.24 (8), p.5795-5803
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2917906570
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Artificial Intelligence
Computational Intelligence
Computer vision
Control
Engineering
Focus
Gesture recognition
Mathematical Logic and Foundations
Mechatronics
Neural networks
Principal components analysis
Robotics
Support vector machines
Visual programming languages
title Research on key issues of gesture recognition for artificial intelligence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A42%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20key%20issues%20of%20gesture%20recognition%20for%20artificial%20intelligence&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Mo,%20Taiping&rft.date=2020-04-01&rft.volume=24&rft.issue=8&rft.spage=5795&rft.epage=5803&rft.pages=5795-5803&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-019-04342-3&rft_dat=%3Cproquest_cross%3E2917906570%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917906570&rft_id=info:pmid/&rfr_iscdi=true