Computational source term estimation of the Gaussian puff dispersion

The hazardous or toxic chemical releases have a detrimental impact on public safety. Estimating source parameters is of particular importance in aiding emergency response and post-assessment. Source term estimation from sensor measurements with a given Gaussian puff dispersion model is a typical inv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2019-01, Vol.23 (1), p.59-75
Hauptverfasser: Li, Hui, Zhang, Jianwen, Yi, Junkai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 75
container_issue 1
container_start_page 59
container_title Soft computing (Berlin, Germany)
container_volume 23
creator Li, Hui
Zhang, Jianwen
Yi, Junkai
description The hazardous or toxic chemical releases have a detrimental impact on public safety. Estimating source parameters is of particular importance in aiding emergency response and post-assessment. Source term estimation from sensor measurements with a given Gaussian puff dispersion model is a typical inverse problem, which can be transformed into an optimization problem. In this paper, we employed the particle swarm optimization, the Nelder–Mead method, and their hybrid method to solve the optimization problem. Furthermore, we proposed a three-dimensional neighborhood topology which considerably improves performance of the particle swarm optimization. We implemented all these algorithms in JAVA on an embedded system to make a preliminary estimation of the accidental puff release. Numerical experiments with synthetic datasets show that the particle swarm optimization maintains a balance between computation time, accuracy, robustness, and implementation complexity. In contrast, the hybrid algorithm has an advantage in computation time at the expense of more sophisticated implementation.
doi_str_mv 10.1007/s00500-018-3440-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917906389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917906389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e32d7d019364edc986f50ac6b72b3188586bdefadaf9b219717db2d2b76d781f3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqXwA9gsMRvOdmLHIypQkCqxwGw5sQ2pmib4koF_j9sgMTHdSffe07uPkGsOtxxA3yFACcCAV0wWBTBxQha8kJLpQpvT4y6YVoU8JxeIWwDBdSkX5GHVd8M0urHt925HsZ9SE-gYUkcDjm13PNA-0vEz0LWbEFu3p8MUI_UtDiFhvl-Ss-h2GK5-55K8Pz2-rZ7Z5nX9srrfsEZyNbIghdceuJGqCL4xlYoluEbVWtSSV1VZqdqH6LyLphbcaK59LbyotfK64lEuyc2cO6T-a8r97Db3zb3RCsO1ASUrk1V8VjWpR0wh2iHlR9K35WAPsOwMy2ZY9gDLiuwRswezdv8R0l_y_6YflVNswA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917906389</pqid></control><display><type>article</type><title>Computational source term estimation of the Gaussian puff dispersion</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Li, Hui ; Zhang, Jianwen ; Yi, Junkai</creator><creatorcontrib>Li, Hui ; Zhang, Jianwen ; Yi, Junkai</creatorcontrib><description>The hazardous or toxic chemical releases have a detrimental impact on public safety. Estimating source parameters is of particular importance in aiding emergency response and post-assessment. Source term estimation from sensor measurements with a given Gaussian puff dispersion model is a typical inverse problem, which can be transformed into an optimization problem. In this paper, we employed the particle swarm optimization, the Nelder–Mead method, and their hybrid method to solve the optimization problem. Furthermore, we proposed a three-dimensional neighborhood topology which considerably improves performance of the particle swarm optimization. We implemented all these algorithms in JAVA on an embedded system to make a preliminary estimation of the accidental puff release. Numerical experiments with synthetic datasets show that the particle swarm optimization maintains a balance between computation time, accuracy, robustness, and implementation complexity. In contrast, the hybrid algorithm has an advantage in computation time at the expense of more sophisticated implementation.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-018-3440-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Computational Intelligence ; Computing time ; Control ; Embedded systems ; Emergency response ; Engineering ; Estimation ; Genetic algorithms ; Inverse problems ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Methods ; Optimization algorithms ; Particle swarm optimization ; Public safety ; Robotics ; Robustness (mathematics) ; Synthetic data ; Topology</subject><ispartof>Soft computing (Berlin, Germany), 2019-01, Vol.23 (1), p.59-75</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e32d7d019364edc986f50ac6b72b3188586bdefadaf9b219717db2d2b76d781f3</citedby><cites>FETCH-LOGICAL-c316t-e32d7d019364edc986f50ac6b72b3188586bdefadaf9b219717db2d2b76d781f3</cites><orcidid>0000-0002-8866-5941</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-018-3440-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917906389?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Zhang, Jianwen</creatorcontrib><creatorcontrib>Yi, Junkai</creatorcontrib><title>Computational source term estimation of the Gaussian puff dispersion</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>The hazardous or toxic chemical releases have a detrimental impact on public safety. Estimating source parameters is of particular importance in aiding emergency response and post-assessment. Source term estimation from sensor measurements with a given Gaussian puff dispersion model is a typical inverse problem, which can be transformed into an optimization problem. In this paper, we employed the particle swarm optimization, the Nelder–Mead method, and their hybrid method to solve the optimization problem. Furthermore, we proposed a three-dimensional neighborhood topology which considerably improves performance of the particle swarm optimization. We implemented all these algorithms in JAVA on an embedded system to make a preliminary estimation of the accidental puff release. Numerical experiments with synthetic datasets show that the particle swarm optimization maintains a balance between computation time, accuracy, robustness, and implementation complexity. In contrast, the hybrid algorithm has an advantage in computation time at the expense of more sophisticated implementation.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Computing time</subject><subject>Control</subject><subject>Embedded systems</subject><subject>Emergency response</subject><subject>Engineering</subject><subject>Estimation</subject><subject>Genetic algorithms</subject><subject>Inverse problems</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Methods</subject><subject>Optimization algorithms</subject><subject>Particle swarm optimization</subject><subject>Public safety</subject><subject>Robotics</subject><subject>Robustness (mathematics)</subject><subject>Synthetic data</subject><subject>Topology</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kDFPwzAQhS0EEqXwA9gsMRvOdmLHIypQkCqxwGw5sQ2pmib4koF_j9sgMTHdSffe07uPkGsOtxxA3yFACcCAV0wWBTBxQha8kJLpQpvT4y6YVoU8JxeIWwDBdSkX5GHVd8M0urHt925HsZ9SE-gYUkcDjm13PNA-0vEz0LWbEFu3p8MUI_UtDiFhvl-Ss-h2GK5-55K8Pz2-rZ7Z5nX9srrfsEZyNbIghdceuJGqCL4xlYoluEbVWtSSV1VZqdqH6LyLphbcaK59LbyotfK64lEuyc2cO6T-a8r97Db3zb3RCsO1ASUrk1V8VjWpR0wh2iHlR9K35WAPsOwMy2ZY9gDLiuwRswezdv8R0l_y_6YflVNswA</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Li, Hui</creator><creator>Zhang, Jianwen</creator><creator>Yi, Junkai</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-8866-5941</orcidid></search><sort><creationdate>20190101</creationdate><title>Computational source term estimation of the Gaussian puff dispersion</title><author>Li, Hui ; Zhang, Jianwen ; Yi, Junkai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e32d7d019364edc986f50ac6b72b3188586bdefadaf9b219717db2d2b76d781f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Computing time</topic><topic>Control</topic><topic>Embedded systems</topic><topic>Emergency response</topic><topic>Engineering</topic><topic>Estimation</topic><topic>Genetic algorithms</topic><topic>Inverse problems</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Methods</topic><topic>Optimization algorithms</topic><topic>Particle swarm optimization</topic><topic>Public safety</topic><topic>Robotics</topic><topic>Robustness (mathematics)</topic><topic>Synthetic data</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Zhang, Jianwen</creatorcontrib><creatorcontrib>Yi, Junkai</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hui</au><au>Zhang, Jianwen</au><au>Yi, Junkai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational source term estimation of the Gaussian puff dispersion</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>23</volume><issue>1</issue><spage>59</spage><epage>75</epage><pages>59-75</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>The hazardous or toxic chemical releases have a detrimental impact on public safety. Estimating source parameters is of particular importance in aiding emergency response and post-assessment. Source term estimation from sensor measurements with a given Gaussian puff dispersion model is a typical inverse problem, which can be transformed into an optimization problem. In this paper, we employed the particle swarm optimization, the Nelder–Mead method, and their hybrid method to solve the optimization problem. Furthermore, we proposed a three-dimensional neighborhood topology which considerably improves performance of the particle swarm optimization. We implemented all these algorithms in JAVA on an embedded system to make a preliminary estimation of the accidental puff release. Numerical experiments with synthetic datasets show that the particle swarm optimization maintains a balance between computation time, accuracy, robustness, and implementation complexity. In contrast, the hybrid algorithm has an advantage in computation time at the expense of more sophisticated implementation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-018-3440-2</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8866-5941</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2019-01, Vol.23 (1), p.59-75
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2917906389
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Artificial Intelligence
Computational Intelligence
Computing time
Control
Embedded systems
Emergency response
Engineering
Estimation
Genetic algorithms
Inverse problems
Mathematical Logic and Foundations
Mechatronics
Methodologies and Application
Methods
Optimization algorithms
Particle swarm optimization
Public safety
Robotics
Robustness (mathematics)
Synthetic data
Topology
title Computational source term estimation of the Gaussian puff dispersion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A39%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20source%20term%20estimation%20of%20the%20Gaussian%20puff%20dispersion&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Li,%20Hui&rft.date=2019-01-01&rft.volume=23&rft.issue=1&rft.spage=59&rft.epage=75&rft.pages=59-75&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-018-3440-2&rft_dat=%3Cproquest_cross%3E2917906389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917906389&rft_id=info:pmid/&rfr_iscdi=true