Computational source term estimation of the Gaussian puff dispersion
The hazardous or toxic chemical releases have a detrimental impact on public safety. Estimating source parameters is of particular importance in aiding emergency response and post-assessment. Source term estimation from sensor measurements with a given Gaussian puff dispersion model is a typical inv...
Gespeichert in:
Veröffentlicht in: | Soft computing (Berlin, Germany) Germany), 2019-01, Vol.23 (1), p.59-75 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 75 |
---|---|
container_issue | 1 |
container_start_page | 59 |
container_title | Soft computing (Berlin, Germany) |
container_volume | 23 |
creator | Li, Hui Zhang, Jianwen Yi, Junkai |
description | The hazardous or toxic chemical releases have a detrimental impact on public safety. Estimating source parameters is of particular importance in aiding emergency response and post-assessment. Source term estimation from sensor measurements with a given Gaussian puff dispersion model is a typical inverse problem, which can be transformed into an optimization problem. In this paper, we employed the particle swarm optimization, the Nelder–Mead method, and their hybrid method to solve the optimization problem. Furthermore, we proposed a three-dimensional neighborhood topology which considerably improves performance of the particle swarm optimization. We implemented all these algorithms in JAVA on an embedded system to make a preliminary estimation of the accidental puff release. Numerical experiments with synthetic datasets show that the particle swarm optimization maintains a balance between computation time, accuracy, robustness, and implementation complexity. In contrast, the hybrid algorithm has an advantage in computation time at the expense of more sophisticated implementation. |
doi_str_mv | 10.1007/s00500-018-3440-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917906389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917906389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e32d7d019364edc986f50ac6b72b3188586bdefadaf9b219717db2d2b76d781f3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqXwA9gsMRvOdmLHIypQkCqxwGw5sQ2pmib4koF_j9sgMTHdSffe07uPkGsOtxxA3yFACcCAV0wWBTBxQha8kJLpQpvT4y6YVoU8JxeIWwDBdSkX5GHVd8M0urHt925HsZ9SE-gYUkcDjm13PNA-0vEz0LWbEFu3p8MUI_UtDiFhvl-Ss-h2GK5-55K8Pz2-rZ7Z5nX9srrfsEZyNbIghdceuJGqCL4xlYoluEbVWtSSV1VZqdqH6LyLphbcaK59LbyotfK64lEuyc2cO6T-a8r97Db3zb3RCsO1ASUrk1V8VjWpR0wh2iHlR9K35WAPsOwMy2ZY9gDLiuwRswezdv8R0l_y_6YflVNswA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917906389</pqid></control><display><type>article</type><title>Computational source term estimation of the Gaussian puff dispersion</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Li, Hui ; Zhang, Jianwen ; Yi, Junkai</creator><creatorcontrib>Li, Hui ; Zhang, Jianwen ; Yi, Junkai</creatorcontrib><description>The hazardous or toxic chemical releases have a detrimental impact on public safety. Estimating source parameters is of particular importance in aiding emergency response and post-assessment. Source term estimation from sensor measurements with a given Gaussian puff dispersion model is a typical inverse problem, which can be transformed into an optimization problem. In this paper, we employed the particle swarm optimization, the Nelder–Mead method, and their hybrid method to solve the optimization problem. Furthermore, we proposed a three-dimensional neighborhood topology which considerably improves performance of the particle swarm optimization. We implemented all these algorithms in JAVA on an embedded system to make a preliminary estimation of the accidental puff release. Numerical experiments with synthetic datasets show that the particle swarm optimization maintains a balance between computation time, accuracy, robustness, and implementation complexity. In contrast, the hybrid algorithm has an advantage in computation time at the expense of more sophisticated implementation.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-018-3440-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Computational Intelligence ; Computing time ; Control ; Embedded systems ; Emergency response ; Engineering ; Estimation ; Genetic algorithms ; Inverse problems ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Methods ; Optimization algorithms ; Particle swarm optimization ; Public safety ; Robotics ; Robustness (mathematics) ; Synthetic data ; Topology</subject><ispartof>Soft computing (Berlin, Germany), 2019-01, Vol.23 (1), p.59-75</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e32d7d019364edc986f50ac6b72b3188586bdefadaf9b219717db2d2b76d781f3</citedby><cites>FETCH-LOGICAL-c316t-e32d7d019364edc986f50ac6b72b3188586bdefadaf9b219717db2d2b76d781f3</cites><orcidid>0000-0002-8866-5941</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-018-3440-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917906389?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Zhang, Jianwen</creatorcontrib><creatorcontrib>Yi, Junkai</creatorcontrib><title>Computational source term estimation of the Gaussian puff dispersion</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>The hazardous or toxic chemical releases have a detrimental impact on public safety. Estimating source parameters is of particular importance in aiding emergency response and post-assessment. Source term estimation from sensor measurements with a given Gaussian puff dispersion model is a typical inverse problem, which can be transformed into an optimization problem. In this paper, we employed the particle swarm optimization, the Nelder–Mead method, and their hybrid method to solve the optimization problem. Furthermore, we proposed a three-dimensional neighborhood topology which considerably improves performance of the particle swarm optimization. We implemented all these algorithms in JAVA on an embedded system to make a preliminary estimation of the accidental puff release. Numerical experiments with synthetic datasets show that the particle swarm optimization maintains a balance between computation time, accuracy, robustness, and implementation complexity. In contrast, the hybrid algorithm has an advantage in computation time at the expense of more sophisticated implementation.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Computing time</subject><subject>Control</subject><subject>Embedded systems</subject><subject>Emergency response</subject><subject>Engineering</subject><subject>Estimation</subject><subject>Genetic algorithms</subject><subject>Inverse problems</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Methods</subject><subject>Optimization algorithms</subject><subject>Particle swarm optimization</subject><subject>Public safety</subject><subject>Robotics</subject><subject>Robustness (mathematics)</subject><subject>Synthetic data</subject><subject>Topology</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kDFPwzAQhS0EEqXwA9gsMRvOdmLHIypQkCqxwGw5sQ2pmib4koF_j9sgMTHdSffe07uPkGsOtxxA3yFACcCAV0wWBTBxQha8kJLpQpvT4y6YVoU8JxeIWwDBdSkX5GHVd8M0urHt925HsZ9SE-gYUkcDjm13PNA-0vEz0LWbEFu3p8MUI_UtDiFhvl-Ss-h2GK5-55K8Pz2-rZ7Z5nX9srrfsEZyNbIghdceuJGqCL4xlYoluEbVWtSSV1VZqdqH6LyLphbcaK59LbyotfK64lEuyc2cO6T-a8r97Db3zb3RCsO1ASUrk1V8VjWpR0wh2iHlR9K35WAPsOwMy2ZY9gDLiuwRswezdv8R0l_y_6YflVNswA</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Li, Hui</creator><creator>Zhang, Jianwen</creator><creator>Yi, Junkai</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-8866-5941</orcidid></search><sort><creationdate>20190101</creationdate><title>Computational source term estimation of the Gaussian puff dispersion</title><author>Li, Hui ; Zhang, Jianwen ; Yi, Junkai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e32d7d019364edc986f50ac6b72b3188586bdefadaf9b219717db2d2b76d781f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Computing time</topic><topic>Control</topic><topic>Embedded systems</topic><topic>Emergency response</topic><topic>Engineering</topic><topic>Estimation</topic><topic>Genetic algorithms</topic><topic>Inverse problems</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Methods</topic><topic>Optimization algorithms</topic><topic>Particle swarm optimization</topic><topic>Public safety</topic><topic>Robotics</topic><topic>Robustness (mathematics)</topic><topic>Synthetic data</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Zhang, Jianwen</creatorcontrib><creatorcontrib>Yi, Junkai</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hui</au><au>Zhang, Jianwen</au><au>Yi, Junkai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational source term estimation of the Gaussian puff dispersion</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>23</volume><issue>1</issue><spage>59</spage><epage>75</epage><pages>59-75</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>The hazardous or toxic chemical releases have a detrimental impact on public safety. Estimating source parameters is of particular importance in aiding emergency response and post-assessment. Source term estimation from sensor measurements with a given Gaussian puff dispersion model is a typical inverse problem, which can be transformed into an optimization problem. In this paper, we employed the particle swarm optimization, the Nelder–Mead method, and their hybrid method to solve the optimization problem. Furthermore, we proposed a three-dimensional neighborhood topology which considerably improves performance of the particle swarm optimization. We implemented all these algorithms in JAVA on an embedded system to make a preliminary estimation of the accidental puff release. Numerical experiments with synthetic datasets show that the particle swarm optimization maintains a balance between computation time, accuracy, robustness, and implementation complexity. In contrast, the hybrid algorithm has an advantage in computation time at the expense of more sophisticated implementation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-018-3440-2</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8866-5941</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-7643 |
ispartof | Soft computing (Berlin, Germany), 2019-01, Vol.23 (1), p.59-75 |
issn | 1432-7643 1433-7479 |
language | eng |
recordid | cdi_proquest_journals_2917906389 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Algorithms Artificial Intelligence Computational Intelligence Computing time Control Embedded systems Emergency response Engineering Estimation Genetic algorithms Inverse problems Mathematical Logic and Foundations Mechatronics Methodologies and Application Methods Optimization algorithms Particle swarm optimization Public safety Robotics Robustness (mathematics) Synthetic data Topology |
title | Computational source term estimation of the Gaussian puff dispersion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A39%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20source%20term%20estimation%20of%20the%20Gaussian%20puff%20dispersion&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Li,%20Hui&rft.date=2019-01-01&rft.volume=23&rft.issue=1&rft.spage=59&rft.epage=75&rft.pages=59-75&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-018-3440-2&rft_dat=%3Cproquest_cross%3E2917906389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917906389&rft_id=info:pmid/&rfr_iscdi=true |