Some results on L-algebras

In this article, we intend to investigate different types of L -algebras and provide finite and infinite examples of them. Then, we state the concept of ideal in L -algebras, equivalence definitions and examples of it, and introduce different types of ideals, including positive implicative and impli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2023-10, Vol.27 (19), p.13765-13777
1. Verfasser: Aaly Kologani, Mona
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13777
container_issue 19
container_start_page 13765
container_title Soft computing (Berlin, Germany)
container_volume 27
creator Aaly Kologani, Mona
description In this article, we intend to investigate different types of L -algebras and provide finite and infinite examples of them. Then, we state the concept of ideal in L -algebras, equivalence definitions and examples of it, and introduce different types of ideals, including positive implicative and implicative ideals, and examine definitions equivalent to them and the relationship between them. In addition, we define the quotient structure made by different kind of ideal, and we show that if L is a CKL -algebra and I is a commutative ideal of L , then L I is a commutative BCK -algebra.
doi_str_mv 10.1007/s00500-023-08965-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917905608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917905608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5b5d01cfeb18dbe6a58162889b6a9b17e8e07dfa79c09b0ce277f8c70c699c3</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_oKsB19GXZJKXLKX4BQMu6j4kmTfF0nZqMl347x07gjtX7y7uuQ8OYwsBdwIA7wuABuAgFQfrjOb6jM1ErRTHGt35KUuOplaX7KqUDYAUqNWMLVb9jqpM5bgdStXvq4aH7ZpiDuWaXXRhW-jm987Z6unxffnCm7fn1-VDw5MSbuA66hZE6igK20YyQVthpLUumuCiQLIE2HYBXQIXIZFE7GxCSMa5pObsdlo95P7zSGXwm_6Y9-NDL51AB9qAHVtyaqXcl5Kp84f8sQv5ywvwPwb8ZMCPBvzJgNcjpCaojOX9mvLf9D_UN_WEXGk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917905608</pqid></control><display><type>article</type><title>Some results on L-algebras</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Aaly Kologani, Mona</creator><creatorcontrib>Aaly Kologani, Mona</creatorcontrib><description>In this article, we intend to investigate different types of L -algebras and provide finite and infinite examples of them. Then, we state the concept of ideal in L -algebras, equivalence definitions and examples of it, and introduce different types of ideals, including positive implicative and implicative ideals, and examine definitions equivalent to them and the relationship between them. In addition, we define the quotient structure made by different kind of ideal, and we show that if L is a CKL -algebra and I is a commutative ideal of L , then L I is a commutative BCK -algebra.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-023-08965-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Algebraic ; Analytical Methods in Soft Computing ; Artificial Intelligence ; Computational Intelligence ; Control ; Engineering ; Equivalence ; Foundation ; Mathematical Logic and Foundations ; Mechatronics ; Robotics</subject><ispartof>Soft computing (Berlin, Germany), 2023-10, Vol.27 (19), p.13765-13777</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5b5d01cfeb18dbe6a58162889b6a9b17e8e07dfa79c09b0ce277f8c70c699c3</citedby><cites>FETCH-LOGICAL-c319t-5b5d01cfeb18dbe6a58162889b6a9b17e8e07dfa79c09b0ce277f8c70c699c3</cites><orcidid>0000-0002-5234-2876</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-023-08965-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917905608?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21369,27903,27904,33723,41467,42536,43784,51297</link.rule.ids></links><search><creatorcontrib>Aaly Kologani, Mona</creatorcontrib><title>Some results on L-algebras</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>In this article, we intend to investigate different types of L -algebras and provide finite and infinite examples of them. Then, we state the concept of ideal in L -algebras, equivalence definitions and examples of it, and introduce different types of ideals, including positive implicative and implicative ideals, and examine definitions equivalent to them and the relationship between them. In addition, we define the quotient structure made by different kind of ideal, and we show that if L is a CKL -algebra and I is a commutative ideal of L , then L I is a commutative BCK -algebra.</description><subject>Algebra</subject><subject>Algebraic</subject><subject>Analytical Methods in Soft Computing</subject><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Engineering</subject><subject>Equivalence</subject><subject>Foundation</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Robotics</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEURYMoWKt_oKsB19GXZJKXLKX4BQMu6j4kmTfF0nZqMl347x07gjtX7y7uuQ8OYwsBdwIA7wuABuAgFQfrjOb6jM1ErRTHGt35KUuOplaX7KqUDYAUqNWMLVb9jqpM5bgdStXvq4aH7ZpiDuWaXXRhW-jm987Z6unxffnCm7fn1-VDw5MSbuA66hZE6igK20YyQVthpLUumuCiQLIE2HYBXQIXIZFE7GxCSMa5pObsdlo95P7zSGXwm_6Y9-NDL51AB9qAHVtyaqXcl5Kp84f8sQv5ywvwPwb8ZMCPBvzJgNcjpCaojOX9mvLf9D_UN_WEXGk</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Aaly Kologani, Mona</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-5234-2876</orcidid></search><sort><creationdate>20231001</creationdate><title>Some results on L-algebras</title><author>Aaly Kologani, Mona</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5b5d01cfeb18dbe6a58162889b6a9b17e8e07dfa79c09b0ce277f8c70c699c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Algebraic</topic><topic>Analytical Methods in Soft Computing</topic><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Engineering</topic><topic>Equivalence</topic><topic>Foundation</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aaly Kologani, Mona</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aaly Kologani, Mona</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some results on L-algebras</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>27</volume><issue>19</issue><spage>13765</spage><epage>13777</epage><pages>13765-13777</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>In this article, we intend to investigate different types of L -algebras and provide finite and infinite examples of them. Then, we state the concept of ideal in L -algebras, equivalence definitions and examples of it, and introduce different types of ideals, including positive implicative and implicative ideals, and examine definitions equivalent to them and the relationship between them. In addition, we define the quotient structure made by different kind of ideal, and we show that if L is a CKL -algebra and I is a commutative ideal of L , then L I is a commutative BCK -algebra.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-023-08965-5</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5234-2876</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2023-10, Vol.27 (19), p.13765-13777
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2917905608
source SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algebra
Algebraic
Analytical Methods in Soft Computing
Artificial Intelligence
Computational Intelligence
Control
Engineering
Equivalence
Foundation
Mathematical Logic and Foundations
Mechatronics
Robotics
title Some results on L-algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A05%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20results%20on%20L-algebras&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Aaly%20Kologani,%20Mona&rft.date=2023-10-01&rft.volume=27&rft.issue=19&rft.spage=13765&rft.epage=13777&rft.pages=13765-13777&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-023-08965-5&rft_dat=%3Cproquest_cross%3E2917905608%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917905608&rft_id=info:pmid/&rfr_iscdi=true