A fuzzy ELECTRE structure methodology to assess big data maturity in healthcare SMEs
Advances in technology and an increase in the amount and complexity of data that are generated in healthcare have led to an indispensable revolution in this sector related to big data. Analytics of information based on multimodal clinical data sources requires big data projects. When starting big da...
Gespeichert in:
Veröffentlicht in: | Soft computing (Berlin, Germany) Germany), 2019-10, Vol.23 (20), p.10537-10550 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10550 |
---|---|
container_issue | 20 |
container_start_page | 10537 |
container_title | Soft computing (Berlin, Germany) |
container_volume | 23 |
creator | Peña, Alejandro Bonet, Isis Lochmuller, Christian Tabares, Marta S. Piedrahita, Carlos C. Sánchez, Carmen C. Giraldo Marín, Lillyana María Góngora, Mario Chiclana, Francisco |
description | Advances in technology and an increase in the amount and complexity of data that are generated in healthcare have led to an indispensable revolution in this sector related to big data. Analytics of information based on multimodal clinical data sources requires big data projects. When starting big data projects in the healthcare sector, it is often necessary to assess the maturity of an organization with respect to big data, i.e., its capacity in managing big data. The assessment of the maturity of an organization requires multicriteria decision making as there is no single criterion or dimension that defines the maturity level regarding big data but an entire set of them. Based on the ISO 15504, this article proposes a fuzzy ELECTRE structure methodology to assess the maturity level of small- and medium-sized enterprises in the healthcare sector. The obtained experimental results provide evidence that this methodology helps to determine and compare maturity levels in big data management of organizations or the evolution of maturity over time. This is also useful in terms of diagnosing the readiness of an organization before starting to implement big data initiatives or technologies. |
doi_str_mv | 10.1007/s00500-018-3625-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917905295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917905295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-856e558d20ef836d6d5a55ad28ad956653e33c54e38153d66215e16e0b8d00103</originalsourceid><addsrcrecordid>eNp1kD1PwzAQQC0EEqXwA9gsMRvOds5xxqoKH1IREpTZcmOnH2qbYjtD-utJCRIT093w3p30CLnlcM8B8ocIgAAMuGZSCWT6jIx4JiXLs7w4_9kFy1UmL8lVjBsAwXOUIzKf0Lo9Hjtazsrp_L2kMYW2Sm3wdOfTqnHNtll2NDXUxuhjpIv1kjqbLN3Znlqnjq73dOXtNq0q21sfr2W8Jhe13UZ_8zvH5POxnE-f2ezt6WU6mbFKYpGYRuURtRPgay2VUw4tonVCW1egUii9lBVmXmqO0iklOHquPCy0A-Agx-RuuHsIzVfrYzKbpg37_qURBc8LQFFgT_GBqkITY_C1OYT1zobOcDCneGaIZ_p45hTP6N4RgxN7dr_04e_y_9I3eW5wFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917905295</pqid></control><display><type>article</type><title>A fuzzy ELECTRE structure methodology to assess big data maturity in healthcare SMEs</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Peña, Alejandro ; Bonet, Isis ; Lochmuller, Christian ; Tabares, Marta S. ; Piedrahita, Carlos C. ; Sánchez, Carmen C. ; Giraldo Marín, Lillyana María ; Góngora, Mario ; Chiclana, Francisco</creator><creatorcontrib>Peña, Alejandro ; Bonet, Isis ; Lochmuller, Christian ; Tabares, Marta S. ; Piedrahita, Carlos C. ; Sánchez, Carmen C. ; Giraldo Marín, Lillyana María ; Góngora, Mario ; Chiclana, Francisco</creatorcontrib><description>Advances in technology and an increase in the amount and complexity of data that are generated in healthcare have led to an indispensable revolution in this sector related to big data. Analytics of information based on multimodal clinical data sources requires big data projects. When starting big data projects in the healthcare sector, it is often necessary to assess the maturity of an organization with respect to big data, i.e., its capacity in managing big data. The assessment of the maturity of an organization requires multicriteria decision making as there is no single criterion or dimension that defines the maturity level regarding big data but an entire set of them. Based on the ISO 15504, this article proposes a fuzzy ELECTRE structure methodology to assess the maturity level of small- and medium-sized enterprises in the healthcare sector. The obtained experimental results provide evidence that this methodology helps to determine and compare maturity levels in big data management of organizations or the evolution of maturity over time. This is also useful in terms of diagnosing the readiness of an organization before starting to implement big data initiatives or technologies.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-018-3625-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Big Data ; Computational Intelligence ; Control ; Data analysis ; Data management ; Data processing ; Decision making ; Engineering ; Health care ; Health care industry ; Internet access ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Methodology ; Multiple criterion ; Open source software ; Robotics ; Small & medium sized enterprises-SME ; Software development ; Startups ; Trends</subject><ispartof>Soft computing (Berlin, Germany), 2019-10, Vol.23 (20), p.10537-10550</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-856e558d20ef836d6d5a55ad28ad956653e33c54e38153d66215e16e0b8d00103</citedby><cites>FETCH-LOGICAL-c359t-856e558d20ef836d6d5a55ad28ad956653e33c54e38153d66215e16e0b8d00103</cites><orcidid>0000-0002-3952-4210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-018-3625-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917905295?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Peña, Alejandro</creatorcontrib><creatorcontrib>Bonet, Isis</creatorcontrib><creatorcontrib>Lochmuller, Christian</creatorcontrib><creatorcontrib>Tabares, Marta S.</creatorcontrib><creatorcontrib>Piedrahita, Carlos C.</creatorcontrib><creatorcontrib>Sánchez, Carmen C.</creatorcontrib><creatorcontrib>Giraldo Marín, Lillyana María</creatorcontrib><creatorcontrib>Góngora, Mario</creatorcontrib><creatorcontrib>Chiclana, Francisco</creatorcontrib><title>A fuzzy ELECTRE structure methodology to assess big data maturity in healthcare SMEs</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>Advances in technology and an increase in the amount and complexity of data that are generated in healthcare have led to an indispensable revolution in this sector related to big data. Analytics of information based on multimodal clinical data sources requires big data projects. When starting big data projects in the healthcare sector, it is often necessary to assess the maturity of an organization with respect to big data, i.e., its capacity in managing big data. The assessment of the maturity of an organization requires multicriteria decision making as there is no single criterion or dimension that defines the maturity level regarding big data but an entire set of them. Based on the ISO 15504, this article proposes a fuzzy ELECTRE structure methodology to assess the maturity level of small- and medium-sized enterprises in the healthcare sector. The obtained experimental results provide evidence that this methodology helps to determine and compare maturity levels in big data management of organizations or the evolution of maturity over time. This is also useful in terms of diagnosing the readiness of an organization before starting to implement big data initiatives or technologies.</description><subject>Artificial Intelligence</subject><subject>Big Data</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Data analysis</subject><subject>Data management</subject><subject>Data processing</subject><subject>Decision making</subject><subject>Engineering</subject><subject>Health care</subject><subject>Health care industry</subject><subject>Internet access</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Methodology</subject><subject>Multiple criterion</subject><subject>Open source software</subject><subject>Robotics</subject><subject>Small & medium sized enterprises-SME</subject><subject>Software development</subject><subject>Startups</subject><subject>Trends</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kD1PwzAQQC0EEqXwA9gsMRvOds5xxqoKH1IREpTZcmOnH2qbYjtD-utJCRIT093w3p30CLnlcM8B8ocIgAAMuGZSCWT6jIx4JiXLs7w4_9kFy1UmL8lVjBsAwXOUIzKf0Lo9Hjtazsrp_L2kMYW2Sm3wdOfTqnHNtll2NDXUxuhjpIv1kjqbLN3Znlqnjq73dOXtNq0q21sfr2W8Jhe13UZ_8zvH5POxnE-f2ezt6WU6mbFKYpGYRuURtRPgay2VUw4tonVCW1egUii9lBVmXmqO0iklOHquPCy0A-Agx-RuuHsIzVfrYzKbpg37_qURBc8LQFFgT_GBqkITY_C1OYT1zobOcDCneGaIZ_p45hTP6N4RgxN7dr_04e_y_9I3eW5wFg</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Peña, Alejandro</creator><creator>Bonet, Isis</creator><creator>Lochmuller, Christian</creator><creator>Tabares, Marta S.</creator><creator>Piedrahita, Carlos C.</creator><creator>Sánchez, Carmen C.</creator><creator>Giraldo Marín, Lillyana María</creator><creator>Góngora, Mario</creator><creator>Chiclana, Francisco</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-3952-4210</orcidid></search><sort><creationdate>20191001</creationdate><title>A fuzzy ELECTRE structure methodology to assess big data maturity in healthcare SMEs</title><author>Peña, Alejandro ; Bonet, Isis ; Lochmuller, Christian ; Tabares, Marta S. ; Piedrahita, Carlos C. ; Sánchez, Carmen C. ; Giraldo Marín, Lillyana María ; Góngora, Mario ; Chiclana, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-856e558d20ef836d6d5a55ad28ad956653e33c54e38153d66215e16e0b8d00103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>Big Data</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Data analysis</topic><topic>Data management</topic><topic>Data processing</topic><topic>Decision making</topic><topic>Engineering</topic><topic>Health care</topic><topic>Health care industry</topic><topic>Internet access</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Methodology</topic><topic>Multiple criterion</topic><topic>Open source software</topic><topic>Robotics</topic><topic>Small & medium sized enterprises-SME</topic><topic>Software development</topic><topic>Startups</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peña, Alejandro</creatorcontrib><creatorcontrib>Bonet, Isis</creatorcontrib><creatorcontrib>Lochmuller, Christian</creatorcontrib><creatorcontrib>Tabares, Marta S.</creatorcontrib><creatorcontrib>Piedrahita, Carlos C.</creatorcontrib><creatorcontrib>Sánchez, Carmen C.</creatorcontrib><creatorcontrib>Giraldo Marín, Lillyana María</creatorcontrib><creatorcontrib>Góngora, Mario</creatorcontrib><creatorcontrib>Chiclana, Francisco</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peña, Alejandro</au><au>Bonet, Isis</au><au>Lochmuller, Christian</au><au>Tabares, Marta S.</au><au>Piedrahita, Carlos C.</au><au>Sánchez, Carmen C.</au><au>Giraldo Marín, Lillyana María</au><au>Góngora, Mario</au><au>Chiclana, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fuzzy ELECTRE structure methodology to assess big data maturity in healthcare SMEs</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>23</volume><issue>20</issue><spage>10537</spage><epage>10550</epage><pages>10537-10550</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>Advances in technology and an increase in the amount and complexity of data that are generated in healthcare have led to an indispensable revolution in this sector related to big data. Analytics of information based on multimodal clinical data sources requires big data projects. When starting big data projects in the healthcare sector, it is often necessary to assess the maturity of an organization with respect to big data, i.e., its capacity in managing big data. The assessment of the maturity of an organization requires multicriteria decision making as there is no single criterion or dimension that defines the maturity level regarding big data but an entire set of them. Based on the ISO 15504, this article proposes a fuzzy ELECTRE structure methodology to assess the maturity level of small- and medium-sized enterprises in the healthcare sector. The obtained experimental results provide evidence that this methodology helps to determine and compare maturity levels in big data management of organizations or the evolution of maturity over time. This is also useful in terms of diagnosing the readiness of an organization before starting to implement big data initiatives or technologies.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-018-3625-8</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3952-4210</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-7643 |
ispartof | Soft computing (Berlin, Germany), 2019-10, Vol.23 (20), p.10537-10550 |
issn | 1432-7643 1433-7479 |
language | eng |
recordid | cdi_proquest_journals_2917905295 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Artificial Intelligence Big Data Computational Intelligence Control Data analysis Data management Data processing Decision making Engineering Health care Health care industry Internet access Mathematical Logic and Foundations Mechatronics Methodologies and Application Methodology Multiple criterion Open source software Robotics Small & medium sized enterprises-SME Software development Startups Trends |
title | A fuzzy ELECTRE structure methodology to assess big data maturity in healthcare SMEs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A08%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fuzzy%20ELECTRE%20structure%20methodology%20to%20assess%20big%20data%20maturity%20in%20healthcare%20SMEs&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Pe%C3%B1a,%20Alejandro&rft.date=2019-10-01&rft.volume=23&rft.issue=20&rft.spage=10537&rft.epage=10550&rft.pages=10537-10550&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-018-3625-8&rft_dat=%3Cproquest_cross%3E2917905295%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917905295&rft_id=info:pmid/&rfr_iscdi=true |