A fuzzy ELECTRE structure methodology to assess big data maturity in healthcare SMEs

Advances in technology and an increase in the amount and complexity of data that are generated in healthcare have led to an indispensable revolution in this sector related to big data. Analytics of information based on multimodal clinical data sources requires big data projects. When starting big da...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2019-10, Vol.23 (20), p.10537-10550
Hauptverfasser: Peña, Alejandro, Bonet, Isis, Lochmuller, Christian, Tabares, Marta S., Piedrahita, Carlos C., Sánchez, Carmen C., Giraldo Marín, Lillyana María, Góngora, Mario, Chiclana, Francisco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10550
container_issue 20
container_start_page 10537
container_title Soft computing (Berlin, Germany)
container_volume 23
creator Peña, Alejandro
Bonet, Isis
Lochmuller, Christian
Tabares, Marta S.
Piedrahita, Carlos C.
Sánchez, Carmen C.
Giraldo Marín, Lillyana María
Góngora, Mario
Chiclana, Francisco
description Advances in technology and an increase in the amount and complexity of data that are generated in healthcare have led to an indispensable revolution in this sector related to big data. Analytics of information based on multimodal clinical data sources requires big data projects. When starting big data projects in the healthcare sector, it is often necessary to assess the maturity of an organization with respect to big data, i.e., its capacity in managing big data. The assessment of the maturity of an organization requires multicriteria decision making as there is no single criterion or dimension that defines the maturity level regarding big data but an entire set of them. Based on the ISO 15504, this article proposes a fuzzy ELECTRE structure methodology to assess the maturity level of small- and medium-sized enterprises in the healthcare sector. The obtained experimental results provide evidence that this methodology helps to determine and compare maturity levels in big data management of organizations or the evolution of maturity over time. This is also useful in terms of diagnosing the readiness of an organization before starting to implement big data initiatives or technologies.
doi_str_mv 10.1007/s00500-018-3625-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917905295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917905295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-856e558d20ef836d6d5a55ad28ad956653e33c54e38153d66215e16e0b8d00103</originalsourceid><addsrcrecordid>eNp1kD1PwzAQQC0EEqXwA9gsMRvOds5xxqoKH1IREpTZcmOnH2qbYjtD-utJCRIT093w3p30CLnlcM8B8ocIgAAMuGZSCWT6jIx4JiXLs7w4_9kFy1UmL8lVjBsAwXOUIzKf0Lo9Hjtazsrp_L2kMYW2Sm3wdOfTqnHNtll2NDXUxuhjpIv1kjqbLN3Znlqnjq73dOXtNq0q21sfr2W8Jhe13UZ_8zvH5POxnE-f2ezt6WU6mbFKYpGYRuURtRPgay2VUw4tonVCW1egUii9lBVmXmqO0iklOHquPCy0A-Agx-RuuHsIzVfrYzKbpg37_qURBc8LQFFgT_GBqkITY_C1OYT1zobOcDCneGaIZ_p45hTP6N4RgxN7dr_04e_y_9I3eW5wFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917905295</pqid></control><display><type>article</type><title>A fuzzy ELECTRE structure methodology to assess big data maturity in healthcare SMEs</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Peña, Alejandro ; Bonet, Isis ; Lochmuller, Christian ; Tabares, Marta S. ; Piedrahita, Carlos C. ; Sánchez, Carmen C. ; Giraldo Marín, Lillyana María ; Góngora, Mario ; Chiclana, Francisco</creator><creatorcontrib>Peña, Alejandro ; Bonet, Isis ; Lochmuller, Christian ; Tabares, Marta S. ; Piedrahita, Carlos C. ; Sánchez, Carmen C. ; Giraldo Marín, Lillyana María ; Góngora, Mario ; Chiclana, Francisco</creatorcontrib><description>Advances in technology and an increase in the amount and complexity of data that are generated in healthcare have led to an indispensable revolution in this sector related to big data. Analytics of information based on multimodal clinical data sources requires big data projects. When starting big data projects in the healthcare sector, it is often necessary to assess the maturity of an organization with respect to big data, i.e., its capacity in managing big data. The assessment of the maturity of an organization requires multicriteria decision making as there is no single criterion or dimension that defines the maturity level regarding big data but an entire set of them. Based on the ISO 15504, this article proposes a fuzzy ELECTRE structure methodology to assess the maturity level of small- and medium-sized enterprises in the healthcare sector. The obtained experimental results provide evidence that this methodology helps to determine and compare maturity levels in big data management of organizations or the evolution of maturity over time. This is also useful in terms of diagnosing the readiness of an organization before starting to implement big data initiatives or technologies.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-018-3625-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Big Data ; Computational Intelligence ; Control ; Data analysis ; Data management ; Data processing ; Decision making ; Engineering ; Health care ; Health care industry ; Internet access ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Methodology ; Multiple criterion ; Open source software ; Robotics ; Small &amp; medium sized enterprises-SME ; Software development ; Startups ; Trends</subject><ispartof>Soft computing (Berlin, Germany), 2019-10, Vol.23 (20), p.10537-10550</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-856e558d20ef836d6d5a55ad28ad956653e33c54e38153d66215e16e0b8d00103</citedby><cites>FETCH-LOGICAL-c359t-856e558d20ef836d6d5a55ad28ad956653e33c54e38153d66215e16e0b8d00103</cites><orcidid>0000-0002-3952-4210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-018-3625-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917905295?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Peña, Alejandro</creatorcontrib><creatorcontrib>Bonet, Isis</creatorcontrib><creatorcontrib>Lochmuller, Christian</creatorcontrib><creatorcontrib>Tabares, Marta S.</creatorcontrib><creatorcontrib>Piedrahita, Carlos C.</creatorcontrib><creatorcontrib>Sánchez, Carmen C.</creatorcontrib><creatorcontrib>Giraldo Marín, Lillyana María</creatorcontrib><creatorcontrib>Góngora, Mario</creatorcontrib><creatorcontrib>Chiclana, Francisco</creatorcontrib><title>A fuzzy ELECTRE structure methodology to assess big data maturity in healthcare SMEs</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>Advances in technology and an increase in the amount and complexity of data that are generated in healthcare have led to an indispensable revolution in this sector related to big data. Analytics of information based on multimodal clinical data sources requires big data projects. When starting big data projects in the healthcare sector, it is often necessary to assess the maturity of an organization with respect to big data, i.e., its capacity in managing big data. The assessment of the maturity of an organization requires multicriteria decision making as there is no single criterion or dimension that defines the maturity level regarding big data but an entire set of them. Based on the ISO 15504, this article proposes a fuzzy ELECTRE structure methodology to assess the maturity level of small- and medium-sized enterprises in the healthcare sector. The obtained experimental results provide evidence that this methodology helps to determine and compare maturity levels in big data management of organizations or the evolution of maturity over time. This is also useful in terms of diagnosing the readiness of an organization before starting to implement big data initiatives or technologies.</description><subject>Artificial Intelligence</subject><subject>Big Data</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Data analysis</subject><subject>Data management</subject><subject>Data processing</subject><subject>Decision making</subject><subject>Engineering</subject><subject>Health care</subject><subject>Health care industry</subject><subject>Internet access</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Methodology</subject><subject>Multiple criterion</subject><subject>Open source software</subject><subject>Robotics</subject><subject>Small &amp; medium sized enterprises-SME</subject><subject>Software development</subject><subject>Startups</subject><subject>Trends</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kD1PwzAQQC0EEqXwA9gsMRvOds5xxqoKH1IREpTZcmOnH2qbYjtD-utJCRIT093w3p30CLnlcM8B8ocIgAAMuGZSCWT6jIx4JiXLs7w4_9kFy1UmL8lVjBsAwXOUIzKf0Lo9Hjtazsrp_L2kMYW2Sm3wdOfTqnHNtll2NDXUxuhjpIv1kjqbLN3Znlqnjq73dOXtNq0q21sfr2W8Jhe13UZ_8zvH5POxnE-f2ezt6WU6mbFKYpGYRuURtRPgay2VUw4tonVCW1egUii9lBVmXmqO0iklOHquPCy0A-Agx-RuuHsIzVfrYzKbpg37_qURBc8LQFFgT_GBqkITY_C1OYT1zobOcDCneGaIZ_p45hTP6N4RgxN7dr_04e_y_9I3eW5wFg</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Peña, Alejandro</creator><creator>Bonet, Isis</creator><creator>Lochmuller, Christian</creator><creator>Tabares, Marta S.</creator><creator>Piedrahita, Carlos C.</creator><creator>Sánchez, Carmen C.</creator><creator>Giraldo Marín, Lillyana María</creator><creator>Góngora, Mario</creator><creator>Chiclana, Francisco</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-3952-4210</orcidid></search><sort><creationdate>20191001</creationdate><title>A fuzzy ELECTRE structure methodology to assess big data maturity in healthcare SMEs</title><author>Peña, Alejandro ; Bonet, Isis ; Lochmuller, Christian ; Tabares, Marta S. ; Piedrahita, Carlos C. ; Sánchez, Carmen C. ; Giraldo Marín, Lillyana María ; Góngora, Mario ; Chiclana, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-856e558d20ef836d6d5a55ad28ad956653e33c54e38153d66215e16e0b8d00103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>Big Data</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Data analysis</topic><topic>Data management</topic><topic>Data processing</topic><topic>Decision making</topic><topic>Engineering</topic><topic>Health care</topic><topic>Health care industry</topic><topic>Internet access</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Methodology</topic><topic>Multiple criterion</topic><topic>Open source software</topic><topic>Robotics</topic><topic>Small &amp; medium sized enterprises-SME</topic><topic>Software development</topic><topic>Startups</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peña, Alejandro</creatorcontrib><creatorcontrib>Bonet, Isis</creatorcontrib><creatorcontrib>Lochmuller, Christian</creatorcontrib><creatorcontrib>Tabares, Marta S.</creatorcontrib><creatorcontrib>Piedrahita, Carlos C.</creatorcontrib><creatorcontrib>Sánchez, Carmen C.</creatorcontrib><creatorcontrib>Giraldo Marín, Lillyana María</creatorcontrib><creatorcontrib>Góngora, Mario</creatorcontrib><creatorcontrib>Chiclana, Francisco</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peña, Alejandro</au><au>Bonet, Isis</au><au>Lochmuller, Christian</au><au>Tabares, Marta S.</au><au>Piedrahita, Carlos C.</au><au>Sánchez, Carmen C.</au><au>Giraldo Marín, Lillyana María</au><au>Góngora, Mario</au><au>Chiclana, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fuzzy ELECTRE structure methodology to assess big data maturity in healthcare SMEs</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>23</volume><issue>20</issue><spage>10537</spage><epage>10550</epage><pages>10537-10550</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>Advances in technology and an increase in the amount and complexity of data that are generated in healthcare have led to an indispensable revolution in this sector related to big data. Analytics of information based on multimodal clinical data sources requires big data projects. When starting big data projects in the healthcare sector, it is often necessary to assess the maturity of an organization with respect to big data, i.e., its capacity in managing big data. The assessment of the maturity of an organization requires multicriteria decision making as there is no single criterion or dimension that defines the maturity level regarding big data but an entire set of them. Based on the ISO 15504, this article proposes a fuzzy ELECTRE structure methodology to assess the maturity level of small- and medium-sized enterprises in the healthcare sector. The obtained experimental results provide evidence that this methodology helps to determine and compare maturity levels in big data management of organizations or the evolution of maturity over time. This is also useful in terms of diagnosing the readiness of an organization before starting to implement big data initiatives or technologies.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-018-3625-8</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3952-4210</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2019-10, Vol.23 (20), p.10537-10550
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2917905295
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Artificial Intelligence
Big Data
Computational Intelligence
Control
Data analysis
Data management
Data processing
Decision making
Engineering
Health care
Health care industry
Internet access
Mathematical Logic and Foundations
Mechatronics
Methodologies and Application
Methodology
Multiple criterion
Open source software
Robotics
Small & medium sized enterprises-SME
Software development
Startups
Trends
title A fuzzy ELECTRE structure methodology to assess big data maturity in healthcare SMEs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A08%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fuzzy%20ELECTRE%20structure%20methodology%20to%20assess%20big%20data%20maturity%20in%20healthcare%20SMEs&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Pe%C3%B1a,%20Alejandro&rft.date=2019-10-01&rft.volume=23&rft.issue=20&rft.spage=10537&rft.epage=10550&rft.pages=10537-10550&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-018-3625-8&rft_dat=%3Cproquest_cross%3E2917905295%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917905295&rft_id=info:pmid/&rfr_iscdi=true