Segmentation of carbon nanotube images through an artificial neural network

Segmentation of carbon nanotube images is an important task for nanotechnology. The segmentation stage determines the accuracy of the measurement process of nanotube when assessing the quality of nanomaterials. In this work, we propose two segmentation algorithms for carbon nanotube images. Each alg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2017-02, Vol.21 (3), p.611-625
Hauptverfasser: Trujillo, María Celeste Ramírez, Alarcón, Teresa E., Dalmau, Oscar S., Zamudio Ojeda, Adalberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 625
container_issue 3
container_start_page 611
container_title Soft computing (Berlin, Germany)
container_volume 21
creator Trujillo, María Celeste Ramírez
Alarcón, Teresa E.
Dalmau, Oscar S.
Zamudio Ojeda, Adalberto
description Segmentation of carbon nanotube images is an important task for nanotechnology. The segmentation stage determines the accuracy of the measurement process of nanotube when assessing the quality of nanomaterials. In this work, we propose two segmentation algorithms for carbon nanotube images. Each algorithm includes three stages: preprocessing, segmentation and postprocessing. The first one is applied on images from scanning electron microscopy and employs a matched filter bank in the preprocessing step followed by a neural network in the segmenting phase. The second algorithm uses the Perona–Malik filter for enhancing the nanotube information. The segmentation phase is composed of the relaxed Otsu’s threshold and an artificial neural network. This algorithm is applied on images from transmission electron microscopy. The postprocessing stage, for both algorithms, is based on mathematical morphology. The performance of the proposed algorithms is numerically evaluated by using real image databases, manually segmented by an expert. The algorithm for segmentation of scanning electron microscopy achieved 92.74% of overall accuracy, while the algorithm for segmentation of transmission electron microscopy obtained an accuracy of 73.99% if the whole image is considered. A performance improvement is accomplished if only the region of interest is segmented, arriving to 84.19% of overall accuracy.
doi_str_mv 10.1007/s00500-016-2426-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917904830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917904830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-613d76691eab9974eddf029c0af188c79c4892d1a607878236bca4ab26e584ed3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2A6-jNo8lkKcUXFlyo65DJZKZT26QmGcR_b9oKrlyds_jOudyD0CWBawIgbxLADAADEZhyKjA5QhPCGcOSS3W89xRLwdkpOktpBUCJnLEJen51_cb5bPIQfBW6yprYFOeND3lsXDVsTO9SlZcxjP2yMr4yMQ_dYAezrrwb417yV4gf5-ikM-vkLn51it7v797mj3jx8vA0v11gy4jIWBDWSiEUcaZRSnLXth1QZcF0pK6tVJbXirbECJC1rCkTjTXcNFS4WV1oNkVXh95tDJ-jS1mvwhh9OampIlIBrxkUihwoG0NK0XV6G8sz8VsT0LvN9GEzXTbTu800KRl6yKTC-t7Fv-b_Qz-k9G6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917904830</pqid></control><display><type>article</type><title>Segmentation of carbon nanotube images through an artificial neural network</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Trujillo, María Celeste Ramírez ; Alarcón, Teresa E. ; Dalmau, Oscar S. ; Zamudio Ojeda, Adalberto</creator><creatorcontrib>Trujillo, María Celeste Ramírez ; Alarcón, Teresa E. ; Dalmau, Oscar S. ; Zamudio Ojeda, Adalberto</creatorcontrib><description>Segmentation of carbon nanotube images is an important task for nanotechnology. The segmentation stage determines the accuracy of the measurement process of nanotube when assessing the quality of nanomaterials. In this work, we propose two segmentation algorithms for carbon nanotube images. Each algorithm includes three stages: preprocessing, segmentation and postprocessing. The first one is applied on images from scanning electron microscopy and employs a matched filter bank in the preprocessing step followed by a neural network in the segmenting phase. The second algorithm uses the Perona–Malik filter for enhancing the nanotube information. The segmentation phase is composed of the relaxed Otsu’s threshold and an artificial neural network. This algorithm is applied on images from transmission electron microscopy. The postprocessing stage, for both algorithms, is based on mathematical morphology. The performance of the proposed algorithms is numerically evaluated by using real image databases, manually segmented by an expert. The algorithm for segmentation of scanning electron microscopy achieved 92.74% of overall accuracy, while the algorithm for segmentation of transmission electron microscopy obtained an accuracy of 73.99% if the whole image is considered. A performance improvement is accomplished if only the region of interest is segmented, arriving to 84.19% of overall accuracy.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-016-2426-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Algorithms ; Artificial Intelligence ; Artificial neural networks ; Carbon ; Carbon nanotubes ; Computational Intelligence ; Control ; Deep learning ; Engineering ; Filter banks ; Focus ; Image segmentation ; Image transmission ; Matched filters ; Mathematical Logic and Foundations ; Mathematical morphology ; Mechatronics ; Nanomaterials ; Neural networks ; Preprocessing ; Quality assessment ; Robotics ; Scanning electron microscopy ; Support vector machines ; Transmission electron microscopy</subject><ispartof>Soft computing (Berlin, Germany), 2017-02, Vol.21 (3), p.611-625</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Springer-Verlag Berlin Heidelberg 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-613d76691eab9974eddf029c0af188c79c4892d1a607878236bca4ab26e584ed3</citedby><cites>FETCH-LOGICAL-c316t-613d76691eab9974eddf029c0af188c79c4892d1a607878236bca4ab26e584ed3</cites><orcidid>0000-0002-1828-8458</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-016-2426-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917904830?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21369,27903,27904,33723,41467,42536,43784,51297</link.rule.ids></links><search><creatorcontrib>Trujillo, María Celeste Ramírez</creatorcontrib><creatorcontrib>Alarcón, Teresa E.</creatorcontrib><creatorcontrib>Dalmau, Oscar S.</creatorcontrib><creatorcontrib>Zamudio Ojeda, Adalberto</creatorcontrib><title>Segmentation of carbon nanotube images through an artificial neural network</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>Segmentation of carbon nanotube images is an important task for nanotechnology. The segmentation stage determines the accuracy of the measurement process of nanotube when assessing the quality of nanomaterials. In this work, we propose two segmentation algorithms for carbon nanotube images. Each algorithm includes three stages: preprocessing, segmentation and postprocessing. The first one is applied on images from scanning electron microscopy and employs a matched filter bank in the preprocessing step followed by a neural network in the segmenting phase. The second algorithm uses the Perona–Malik filter for enhancing the nanotube information. The segmentation phase is composed of the relaxed Otsu’s threshold and an artificial neural network. This algorithm is applied on images from transmission electron microscopy. The postprocessing stage, for both algorithms, is based on mathematical morphology. The performance of the proposed algorithms is numerically evaluated by using real image databases, manually segmented by an expert. The algorithm for segmentation of scanning electron microscopy achieved 92.74% of overall accuracy, while the algorithm for segmentation of transmission electron microscopy obtained an accuracy of 73.99% if the whole image is considered. A performance improvement is accomplished if only the region of interest is segmented, arriving to 84.19% of overall accuracy.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Deep learning</subject><subject>Engineering</subject><subject>Filter banks</subject><subject>Focus</subject><subject>Image segmentation</subject><subject>Image transmission</subject><subject>Matched filters</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematical morphology</subject><subject>Mechatronics</subject><subject>Nanomaterials</subject><subject>Neural networks</subject><subject>Preprocessing</subject><subject>Quality assessment</subject><subject>Robotics</subject><subject>Scanning electron microscopy</subject><subject>Support vector machines</subject><subject>Transmission electron microscopy</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wN2A6-jNo8lkKcUXFlyo65DJZKZT26QmGcR_b9oKrlyds_jOudyD0CWBawIgbxLADAADEZhyKjA5QhPCGcOSS3W89xRLwdkpOktpBUCJnLEJen51_cb5bPIQfBW6yprYFOeND3lsXDVsTO9SlZcxjP2yMr4yMQ_dYAezrrwb417yV4gf5-ikM-vkLn51it7v797mj3jx8vA0v11gy4jIWBDWSiEUcaZRSnLXth1QZcF0pK6tVJbXirbECJC1rCkTjTXcNFS4WV1oNkVXh95tDJ-jS1mvwhh9OampIlIBrxkUihwoG0NK0XV6G8sz8VsT0LvN9GEzXTbTu800KRl6yKTC-t7Fv-b_Qz-k9G6w</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Trujillo, María Celeste Ramírez</creator><creator>Alarcón, Teresa E.</creator><creator>Dalmau, Oscar S.</creator><creator>Zamudio Ojeda, Adalberto</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-1828-8458</orcidid></search><sort><creationdate>20170201</creationdate><title>Segmentation of carbon nanotube images through an artificial neural network</title><author>Trujillo, María Celeste Ramírez ; Alarcón, Teresa E. ; Dalmau, Oscar S. ; Zamudio Ojeda, Adalberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-613d76691eab9974eddf029c0af188c79c4892d1a607878236bca4ab26e584ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Deep learning</topic><topic>Engineering</topic><topic>Filter banks</topic><topic>Focus</topic><topic>Image segmentation</topic><topic>Image transmission</topic><topic>Matched filters</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematical morphology</topic><topic>Mechatronics</topic><topic>Nanomaterials</topic><topic>Neural networks</topic><topic>Preprocessing</topic><topic>Quality assessment</topic><topic>Robotics</topic><topic>Scanning electron microscopy</topic><topic>Support vector machines</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trujillo, María Celeste Ramírez</creatorcontrib><creatorcontrib>Alarcón, Teresa E.</creatorcontrib><creatorcontrib>Dalmau, Oscar S.</creatorcontrib><creatorcontrib>Zamudio Ojeda, Adalberto</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trujillo, María Celeste Ramírez</au><au>Alarcón, Teresa E.</au><au>Dalmau, Oscar S.</au><au>Zamudio Ojeda, Adalberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Segmentation of carbon nanotube images through an artificial neural network</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>21</volume><issue>3</issue><spage>611</spage><epage>625</epage><pages>611-625</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>Segmentation of carbon nanotube images is an important task for nanotechnology. The segmentation stage determines the accuracy of the measurement process of nanotube when assessing the quality of nanomaterials. In this work, we propose two segmentation algorithms for carbon nanotube images. Each algorithm includes three stages: preprocessing, segmentation and postprocessing. The first one is applied on images from scanning electron microscopy and employs a matched filter bank in the preprocessing step followed by a neural network in the segmenting phase. The second algorithm uses the Perona–Malik filter for enhancing the nanotube information. The segmentation phase is composed of the relaxed Otsu’s threshold and an artificial neural network. This algorithm is applied on images from transmission electron microscopy. The postprocessing stage, for both algorithms, is based on mathematical morphology. The performance of the proposed algorithms is numerically evaluated by using real image databases, manually segmented by an expert. The algorithm for segmentation of scanning electron microscopy achieved 92.74% of overall accuracy, while the algorithm for segmentation of transmission electron microscopy obtained an accuracy of 73.99% if the whole image is considered. A performance improvement is accomplished if only the region of interest is segmented, arriving to 84.19% of overall accuracy.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-016-2426-1</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1828-8458</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2017-02, Vol.21 (3), p.611-625
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2917904830
source Springer Nature - Complete Springer Journals; ProQuest Central
subjects Accuracy
Algorithms
Artificial Intelligence
Artificial neural networks
Carbon
Carbon nanotubes
Computational Intelligence
Control
Deep learning
Engineering
Filter banks
Focus
Image segmentation
Image transmission
Matched filters
Mathematical Logic and Foundations
Mathematical morphology
Mechatronics
Nanomaterials
Neural networks
Preprocessing
Quality assessment
Robotics
Scanning electron microscopy
Support vector machines
Transmission electron microscopy
title Segmentation of carbon nanotube images through an artificial neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A41%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Segmentation%20of%20carbon%20nanotube%20images%20through%20an%20artificial%20neural%20network&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Trujillo,%20Mar%C3%ADa%20Celeste%20Ram%C3%ADrez&rft.date=2017-02-01&rft.volume=21&rft.issue=3&rft.spage=611&rft.epage=625&rft.pages=611-625&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-016-2426-1&rft_dat=%3Cproquest_cross%3E2917904830%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917904830&rft_id=info:pmid/&rfr_iscdi=true