Using fractional order accumulation to reduce errors from inverse accumulated generating operator of grey model

To smooth the randomness, a grey forecasting model is formulated using the data of accumulating generation operator (AGO) rather than original data. Then the inverse accumulating generation operator (IAGO) is applied to find the predicted values of original data. It is proved that the errors from IA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2015-02, Vol.19 (2), p.483-488
Hauptverfasser: Wu, Lifeng, Liu, Sifeng, Yao, Ligen, Xu, Ruiting, Lei, Xunping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 488
container_issue 2
container_start_page 483
container_title Soft computing (Berlin, Germany)
container_volume 19
creator Wu, Lifeng
Liu, Sifeng
Yao, Ligen
Xu, Ruiting
Lei, Xunping
description To smooth the randomness, a grey forecasting model is formulated using the data of accumulating generation operator (AGO) rather than original data. Then the inverse accumulating generation operator (IAGO) is applied to find the predicted values of original data. It is proved that the errors from IAGO are affected by the order number of AGO. To achieve an accurate prediction, GM(2,1), which stands for one-variable and second-order differential equation, has been improved by means of fractional order AGO. Finally, four real data sets are imported for comparing the performance of the developed GM(2,1) with several other grey models, such as traditional GM(2,1) and GM(1,1). The simulation results show that optimized GM(2,1) has higher performances not only on model fitting but also on forecasting.
doi_str_mv 10.1007/s00500-014-1268-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917904823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917904823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-89134bcd4188bc913b5b6984e0590bb478934221d1d007f17bd68973c829d5f43</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYsoOI7-AHcB19G82iRLGXzBgBtnHdokLR3aZrxphf57Uyu4cnUffOfAOVl2S8k9JUQ-REJyQjChAlNWKDyfZRsqOMdSSH3-szMsC8Evs6sYj4QwKnO-ycIhtkODaijt2Iah7FAA5wGV1k791JXLE40BgXeT9cgDBIgJDz1qhy8P0f-h3qHGDx6SKFmG07IFQKFGDfgZ9cH57jq7qMsu-pvfuc0Oz08fu1e8f3952z3useWqGLHSlIvKOkGVqmw6qrwqtBKe5JpUlZBKc8EYddSl9DWVlSuUltwqpl1eC77N7lbfE4TPycfRHMMEKV80TFOpiVCMJ4qulIUQI_janKDtS5gNJWbp1ay9mtSrWXo1c9KwVRMTOzQe_pz_F30DwsV8hw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917904823</pqid></control><display><type>article</type><title>Using fractional order accumulation to reduce errors from inverse accumulated generating operator of grey model</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Wu, Lifeng ; Liu, Sifeng ; Yao, Ligen ; Xu, Ruiting ; Lei, Xunping</creator><creatorcontrib>Wu, Lifeng ; Liu, Sifeng ; Yao, Ligen ; Xu, Ruiting ; Lei, Xunping</creatorcontrib><description>To smooth the randomness, a grey forecasting model is formulated using the data of accumulating generation operator (AGO) rather than original data. Then the inverse accumulating generation operator (IAGO) is applied to find the predicted values of original data. It is proved that the errors from IAGO are affected by the order number of AGO. To achieve an accurate prediction, GM(2,1), which stands for one-variable and second-order differential equation, has been improved by means of fractional order AGO. Finally, four real data sets are imported for comparing the performance of the developed GM(2,1) with several other grey models, such as traditional GM(2,1) and GM(1,1). The simulation results show that optimized GM(2,1) has higher performances not only on model fitting but also on forecasting.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-014-1268-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accumulation ; Accuracy ; Artificial Intelligence ; Computational Intelligence ; Control ; Differential equations ; Engineering ; Errors ; Forecasting ; Mathematical Logic and Foundations ; Mathematical models ; Mechatronics ; Methodologies and Application ; Robotics</subject><ispartof>Soft computing (Berlin, Germany), 2015-02, Vol.19 (2), p.483-488</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Springer-Verlag Berlin Heidelberg 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-89134bcd4188bc913b5b6984e0590bb478934221d1d007f17bd68973c829d5f43</citedby><cites>FETCH-LOGICAL-c386t-89134bcd4188bc913b5b6984e0590bb478934221d1d007f17bd68973c829d5f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-014-1268-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917904823?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21386,27922,27923,33742,41486,42555,43803,51317,64383,64387,72239</link.rule.ids></links><search><creatorcontrib>Wu, Lifeng</creatorcontrib><creatorcontrib>Liu, Sifeng</creatorcontrib><creatorcontrib>Yao, Ligen</creatorcontrib><creatorcontrib>Xu, Ruiting</creatorcontrib><creatorcontrib>Lei, Xunping</creatorcontrib><title>Using fractional order accumulation to reduce errors from inverse accumulated generating operator of grey model</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>To smooth the randomness, a grey forecasting model is formulated using the data of accumulating generation operator (AGO) rather than original data. Then the inverse accumulating generation operator (IAGO) is applied to find the predicted values of original data. It is proved that the errors from IAGO are affected by the order number of AGO. To achieve an accurate prediction, GM(2,1), which stands for one-variable and second-order differential equation, has been improved by means of fractional order AGO. Finally, four real data sets are imported for comparing the performance of the developed GM(2,1) with several other grey models, such as traditional GM(2,1) and GM(1,1). The simulation results show that optimized GM(2,1) has higher performances not only on model fitting but also on forecasting.</description><subject>Accumulation</subject><subject>Accuracy</subject><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Differential equations</subject><subject>Engineering</subject><subject>Errors</subject><subject>Forecasting</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematical models</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Robotics</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLxDAUhYsoOI7-AHcB19G82iRLGXzBgBtnHdokLR3aZrxphf57Uyu4cnUffOfAOVl2S8k9JUQ-REJyQjChAlNWKDyfZRsqOMdSSH3-szMsC8Evs6sYj4QwKnO-ycIhtkODaijt2Iah7FAA5wGV1k791JXLE40BgXeT9cgDBIgJDz1qhy8P0f-h3qHGDx6SKFmG07IFQKFGDfgZ9cH57jq7qMsu-pvfuc0Oz08fu1e8f3952z3useWqGLHSlIvKOkGVqmw6qrwqtBKe5JpUlZBKc8EYddSl9DWVlSuUltwqpl1eC77N7lbfE4TPycfRHMMEKV80TFOpiVCMJ4qulIUQI_janKDtS5gNJWbp1ay9mtSrWXo1c9KwVRMTOzQe_pz_F30DwsV8hw</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Wu, Lifeng</creator><creator>Liu, Sifeng</creator><creator>Yao, Ligen</creator><creator>Xu, Ruiting</creator><creator>Lei, Xunping</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20150201</creationdate><title>Using fractional order accumulation to reduce errors from inverse accumulated generating operator of grey model</title><author>Wu, Lifeng ; Liu, Sifeng ; Yao, Ligen ; Xu, Ruiting ; Lei, Xunping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-89134bcd4188bc913b5b6984e0590bb478934221d1d007f17bd68973c829d5f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accumulation</topic><topic>Accuracy</topic><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Differential equations</topic><topic>Engineering</topic><topic>Errors</topic><topic>Forecasting</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematical models</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Lifeng</creatorcontrib><creatorcontrib>Liu, Sifeng</creatorcontrib><creatorcontrib>Yao, Ligen</creatorcontrib><creatorcontrib>Xu, Ruiting</creatorcontrib><creatorcontrib>Lei, Xunping</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Lifeng</au><au>Liu, Sifeng</au><au>Yao, Ligen</au><au>Xu, Ruiting</au><au>Lei, Xunping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using fractional order accumulation to reduce errors from inverse accumulated generating operator of grey model</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2015-02-01</date><risdate>2015</risdate><volume>19</volume><issue>2</issue><spage>483</spage><epage>488</epage><pages>483-488</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>To smooth the randomness, a grey forecasting model is formulated using the data of accumulating generation operator (AGO) rather than original data. Then the inverse accumulating generation operator (IAGO) is applied to find the predicted values of original data. It is proved that the errors from IAGO are affected by the order number of AGO. To achieve an accurate prediction, GM(2,1), which stands for one-variable and second-order differential equation, has been improved by means of fractional order AGO. Finally, four real data sets are imported for comparing the performance of the developed GM(2,1) with several other grey models, such as traditional GM(2,1) and GM(1,1). The simulation results show that optimized GM(2,1) has higher performances not only on model fitting but also on forecasting.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-014-1268-y</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2015-02, Vol.19 (2), p.483-488
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2917904823
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Accumulation
Accuracy
Artificial Intelligence
Computational Intelligence
Control
Differential equations
Engineering
Errors
Forecasting
Mathematical Logic and Foundations
Mathematical models
Mechatronics
Methodologies and Application
Robotics
title Using fractional order accumulation to reduce errors from inverse accumulated generating operator of grey model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A59%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20fractional%20order%20accumulation%20to%20reduce%20errors%20from%20inverse%20accumulated%20generating%20operator%20of%20grey%20model&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Wu,%20Lifeng&rft.date=2015-02-01&rft.volume=19&rft.issue=2&rft.spage=483&rft.epage=488&rft.pages=483-488&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-014-1268-y&rft_dat=%3Cproquest_cross%3E2917904823%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917904823&rft_id=info:pmid/&rfr_iscdi=true