A parallel and scalable CAST-based clustering algorithm on GPU
The advances in nanometer technology and integrated circuit technology enable the graphics card to attach individual memory and one or more processing units, named GPU, in which most of the graphing instructions can be processed in parallel. Obviously, the computation resource can be used to improve...
Gespeichert in:
Veröffentlicht in: | Soft computing (Berlin, Germany) Germany), 2014-03, Vol.18 (3), p.539-547 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 547 |
---|---|
container_issue | 3 |
container_start_page | 539 |
container_title | Soft computing (Berlin, Germany) |
container_volume | 18 |
creator | Lin, Kawuu W. Lin, Chun-Hung Hsiao, Chun-Yuan |
description | The advances in nanometer technology and integrated circuit technology enable the graphics card to attach individual memory and one or more processing units, named GPU, in which most of the graphing instructions can be processed in parallel. Obviously, the computation resource can be used to improve the execution efficiency of not only graphing applications but other time consuming applications like data mining. The Clustering Affinity Search Technique is a famous clustering algorithm, which is widely used in clustering the biological data. In this paper, we will propose an algorithm that can utilize the GPU and the individual memory of graphics card to accelerate the execution. The experimental results show that our proposed algorithm can deliver excellent performance in terms of execution time and is scalable to very large databases. |
doi_str_mv | 10.1007/s00500-013-1074-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917900124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917900124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e69c4508e8e1aa0d7f9102f0a0b5318aad29922620ebf761d741622c6497f42d3</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4C3gOTqTZJPmIpSiVSgo2J5DdjdbW9LdNdk99O3duoInTzOH__uH-Qi5RbhHAP2QADIABigYgpbseEYmKIVgWmpz_rNzppUUl-QqpT0AR52JCXmc09ZFF4IP1NUlTYULLg-eLuYfa5a75EtahD51Pu7qLXVh28Rd93mgTU2X75trclG5kPzN75ySzfPTevHCVm_L18V8xQqBqmNemUJmMPMzj85BqSuDwCtwkGcCZ86V3BjOFQefV1phqSUqzgslja4kL8WU3I29bWy-ep86u2_6WA8nLTeoDQByOaRwTBWxSSn6yrZxd3DxaBHsSZMdNdlBkz1psseB4SOT2tOHPv41_w99A0agaF0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917900124</pqid></control><display><type>article</type><title>A parallel and scalable CAST-based clustering algorithm on GPU</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Lin, Kawuu W. ; Lin, Chun-Hung ; Hsiao, Chun-Yuan</creator><creatorcontrib>Lin, Kawuu W. ; Lin, Chun-Hung ; Hsiao, Chun-Yuan</creatorcontrib><description>The advances in nanometer technology and integrated circuit technology enable the graphics card to attach individual memory and one or more processing units, named GPU, in which most of the graphing instructions can be processed in parallel. Obviously, the computation resource can be used to improve the execution efficiency of not only graphing applications but other time consuming applications like data mining. The Clustering Affinity Search Technique is a famous clustering algorithm, which is widely used in clustering the biological data. In this paper, we will propose an algorithm that can utilize the GPU and the individual memory of graphics card to accelerate the execution. The experimental results show that our proposed algorithm can deliver excellent performance in terms of execution time and is scalable to very large databases.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-013-1074-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Architecture ; Artificial Intelligence ; Clustering ; Computational Intelligence ; Computer memory ; Control ; Data mining ; Design ; Efficiency ; Engineering ; Graphics processing units ; Integrated circuits ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Robotics</subject><ispartof>Soft computing (Berlin, Germany), 2014-03, Vol.18 (3), p.539-547</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Springer-Verlag Berlin Heidelberg 2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e69c4508e8e1aa0d7f9102f0a0b5318aad29922620ebf761d741622c6497f42d3</citedby><cites>FETCH-LOGICAL-c316t-e69c4508e8e1aa0d7f9102f0a0b5318aad29922620ebf761d741622c6497f42d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-013-1074-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917900124?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21369,27905,27906,33725,41469,42538,43786,51300,64364,64368,72218</link.rule.ids></links><search><creatorcontrib>Lin, Kawuu W.</creatorcontrib><creatorcontrib>Lin, Chun-Hung</creatorcontrib><creatorcontrib>Hsiao, Chun-Yuan</creatorcontrib><title>A parallel and scalable CAST-based clustering algorithm on GPU</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>The advances in nanometer technology and integrated circuit technology enable the graphics card to attach individual memory and one or more processing units, named GPU, in which most of the graphing instructions can be processed in parallel. Obviously, the computation resource can be used to improve the execution efficiency of not only graphing applications but other time consuming applications like data mining. The Clustering Affinity Search Technique is a famous clustering algorithm, which is widely used in clustering the biological data. In this paper, we will propose an algorithm that can utilize the GPU and the individual memory of graphics card to accelerate the execution. The experimental results show that our proposed algorithm can deliver excellent performance in terms of execution time and is scalable to very large databases.</description><subject>Algorithms</subject><subject>Architecture</subject><subject>Artificial Intelligence</subject><subject>Clustering</subject><subject>Computational Intelligence</subject><subject>Computer memory</subject><subject>Control</subject><subject>Data mining</subject><subject>Design</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Graphics processing units</subject><subject>Integrated circuits</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Robotics</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMFKAzEQhoMoWKsP4C3gOTqTZJPmIpSiVSgo2J5DdjdbW9LdNdk99O3duoInTzOH__uH-Qi5RbhHAP2QADIABigYgpbseEYmKIVgWmpz_rNzppUUl-QqpT0AR52JCXmc09ZFF4IP1NUlTYULLg-eLuYfa5a75EtahD51Pu7qLXVh28Rd93mgTU2X75trclG5kPzN75ySzfPTevHCVm_L18V8xQqBqmNemUJmMPMzj85BqSuDwCtwkGcCZ86V3BjOFQefV1phqSUqzgslja4kL8WU3I29bWy-ep86u2_6WA8nLTeoDQByOaRwTBWxSSn6yrZxd3DxaBHsSZMdNdlBkz1psseB4SOT2tOHPv41_w99A0agaF0</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Lin, Kawuu W.</creator><creator>Lin, Chun-Hung</creator><creator>Hsiao, Chun-Yuan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20140301</creationdate><title>A parallel and scalable CAST-based clustering algorithm on GPU</title><author>Lin, Kawuu W. ; Lin, Chun-Hung ; Hsiao, Chun-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e69c4508e8e1aa0d7f9102f0a0b5318aad29922620ebf761d741622c6497f42d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Architecture</topic><topic>Artificial Intelligence</topic><topic>Clustering</topic><topic>Computational Intelligence</topic><topic>Computer memory</topic><topic>Control</topic><topic>Data mining</topic><topic>Design</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Graphics processing units</topic><topic>Integrated circuits</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Kawuu W.</creatorcontrib><creatorcontrib>Lin, Chun-Hung</creatorcontrib><creatorcontrib>Hsiao, Chun-Yuan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Kawuu W.</au><au>Lin, Chun-Hung</au><au>Hsiao, Chun-Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A parallel and scalable CAST-based clustering algorithm on GPU</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2014-03-01</date><risdate>2014</risdate><volume>18</volume><issue>3</issue><spage>539</spage><epage>547</epage><pages>539-547</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>The advances in nanometer technology and integrated circuit technology enable the graphics card to attach individual memory and one or more processing units, named GPU, in which most of the graphing instructions can be processed in parallel. Obviously, the computation resource can be used to improve the execution efficiency of not only graphing applications but other time consuming applications like data mining. The Clustering Affinity Search Technique is a famous clustering algorithm, which is widely used in clustering the biological data. In this paper, we will propose an algorithm that can utilize the GPU and the individual memory of graphics card to accelerate the execution. The experimental results show that our proposed algorithm can deliver excellent performance in terms of execution time and is scalable to very large databases.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-013-1074-y</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-7643 |
ispartof | Soft computing (Berlin, Germany), 2014-03, Vol.18 (3), p.539-547 |
issn | 1432-7643 1433-7479 |
language | eng |
recordid | cdi_proquest_journals_2917900124 |
source | SpringerLink Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Algorithms Architecture Artificial Intelligence Clustering Computational Intelligence Computer memory Control Data mining Design Efficiency Engineering Graphics processing units Integrated circuits Mathematical Logic and Foundations Mechatronics Methodologies and Application Robotics |
title | A parallel and scalable CAST-based clustering algorithm on GPU |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A31%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20parallel%20and%20scalable%20CAST-based%20clustering%20algorithm%20on%20GPU&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Lin,%20Kawuu%20W.&rft.date=2014-03-01&rft.volume=18&rft.issue=3&rft.spage=539&rft.epage=547&rft.pages=539-547&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-013-1074-y&rft_dat=%3Cproquest_cross%3E2917900124%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917900124&rft_id=info:pmid/&rfr_iscdi=true |