A parallel and scalable CAST-based clustering algorithm on GPU

The advances in nanometer technology and integrated circuit technology enable the graphics card to attach individual memory and one or more processing units, named GPU, in which most of the graphing instructions can be processed in parallel. Obviously, the computation resource can be used to improve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2014-03, Vol.18 (3), p.539-547
Hauptverfasser: Lin, Kawuu W., Lin, Chun-Hung, Hsiao, Chun-Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 547
container_issue 3
container_start_page 539
container_title Soft computing (Berlin, Germany)
container_volume 18
creator Lin, Kawuu W.
Lin, Chun-Hung
Hsiao, Chun-Yuan
description The advances in nanometer technology and integrated circuit technology enable the graphics card to attach individual memory and one or more processing units, named GPU, in which most of the graphing instructions can be processed in parallel. Obviously, the computation resource can be used to improve the execution efficiency of not only graphing applications but other time consuming applications like data mining. The Clustering Affinity Search Technique is a famous clustering algorithm, which is widely used in clustering the biological data. In this paper, we will propose an algorithm that can utilize the GPU and the individual memory of graphics card to accelerate the execution. The experimental results show that our proposed algorithm can deliver excellent performance in terms of execution time and is scalable to very large databases.
doi_str_mv 10.1007/s00500-013-1074-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917900124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917900124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e69c4508e8e1aa0d7f9102f0a0b5318aad29922620ebf761d741622c6497f42d3</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4C3gOTqTZJPmIpSiVSgo2J5DdjdbW9LdNdk99O3duoInTzOH__uH-Qi5RbhHAP2QADIABigYgpbseEYmKIVgWmpz_rNzppUUl-QqpT0AR52JCXmc09ZFF4IP1NUlTYULLg-eLuYfa5a75EtahD51Pu7qLXVh28Rd93mgTU2X75trclG5kPzN75ySzfPTevHCVm_L18V8xQqBqmNemUJmMPMzj85BqSuDwCtwkGcCZ86V3BjOFQefV1phqSUqzgslja4kL8WU3I29bWy-ep86u2_6WA8nLTeoDQByOaRwTBWxSSn6yrZxd3DxaBHsSZMdNdlBkz1psseB4SOT2tOHPv41_w99A0agaF0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917900124</pqid></control><display><type>article</type><title>A parallel and scalable CAST-based clustering algorithm on GPU</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Lin, Kawuu W. ; Lin, Chun-Hung ; Hsiao, Chun-Yuan</creator><creatorcontrib>Lin, Kawuu W. ; Lin, Chun-Hung ; Hsiao, Chun-Yuan</creatorcontrib><description>The advances in nanometer technology and integrated circuit technology enable the graphics card to attach individual memory and one or more processing units, named GPU, in which most of the graphing instructions can be processed in parallel. Obviously, the computation resource can be used to improve the execution efficiency of not only graphing applications but other time consuming applications like data mining. The Clustering Affinity Search Technique is a famous clustering algorithm, which is widely used in clustering the biological data. In this paper, we will propose an algorithm that can utilize the GPU and the individual memory of graphics card to accelerate the execution. The experimental results show that our proposed algorithm can deliver excellent performance in terms of execution time and is scalable to very large databases.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-013-1074-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Architecture ; Artificial Intelligence ; Clustering ; Computational Intelligence ; Computer memory ; Control ; Data mining ; Design ; Efficiency ; Engineering ; Graphics processing units ; Integrated circuits ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Robotics</subject><ispartof>Soft computing (Berlin, Germany), 2014-03, Vol.18 (3), p.539-547</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Springer-Verlag Berlin Heidelberg 2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e69c4508e8e1aa0d7f9102f0a0b5318aad29922620ebf761d741622c6497f42d3</citedby><cites>FETCH-LOGICAL-c316t-e69c4508e8e1aa0d7f9102f0a0b5318aad29922620ebf761d741622c6497f42d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-013-1074-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917900124?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21369,27905,27906,33725,41469,42538,43786,51300,64364,64368,72218</link.rule.ids></links><search><creatorcontrib>Lin, Kawuu W.</creatorcontrib><creatorcontrib>Lin, Chun-Hung</creatorcontrib><creatorcontrib>Hsiao, Chun-Yuan</creatorcontrib><title>A parallel and scalable CAST-based clustering algorithm on GPU</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>The advances in nanometer technology and integrated circuit technology enable the graphics card to attach individual memory and one or more processing units, named GPU, in which most of the graphing instructions can be processed in parallel. Obviously, the computation resource can be used to improve the execution efficiency of not only graphing applications but other time consuming applications like data mining. The Clustering Affinity Search Technique is a famous clustering algorithm, which is widely used in clustering the biological data. In this paper, we will propose an algorithm that can utilize the GPU and the individual memory of graphics card to accelerate the execution. The experimental results show that our proposed algorithm can deliver excellent performance in terms of execution time and is scalable to very large databases.</description><subject>Algorithms</subject><subject>Architecture</subject><subject>Artificial Intelligence</subject><subject>Clustering</subject><subject>Computational Intelligence</subject><subject>Computer memory</subject><subject>Control</subject><subject>Data mining</subject><subject>Design</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Graphics processing units</subject><subject>Integrated circuits</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Robotics</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMFKAzEQhoMoWKsP4C3gOTqTZJPmIpSiVSgo2J5DdjdbW9LdNdk99O3duoInTzOH__uH-Qi5RbhHAP2QADIABigYgpbseEYmKIVgWmpz_rNzppUUl-QqpT0AR52JCXmc09ZFF4IP1NUlTYULLg-eLuYfa5a75EtahD51Pu7qLXVh28Rd93mgTU2X75trclG5kPzN75ySzfPTevHCVm_L18V8xQqBqmNemUJmMPMzj85BqSuDwCtwkGcCZ86V3BjOFQefV1phqSUqzgslja4kL8WU3I29bWy-ep86u2_6WA8nLTeoDQByOaRwTBWxSSn6yrZxd3DxaBHsSZMdNdlBkz1psseB4SOT2tOHPv41_w99A0agaF0</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Lin, Kawuu W.</creator><creator>Lin, Chun-Hung</creator><creator>Hsiao, Chun-Yuan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20140301</creationdate><title>A parallel and scalable CAST-based clustering algorithm on GPU</title><author>Lin, Kawuu W. ; Lin, Chun-Hung ; Hsiao, Chun-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e69c4508e8e1aa0d7f9102f0a0b5318aad29922620ebf761d741622c6497f42d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Architecture</topic><topic>Artificial Intelligence</topic><topic>Clustering</topic><topic>Computational Intelligence</topic><topic>Computer memory</topic><topic>Control</topic><topic>Data mining</topic><topic>Design</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Graphics processing units</topic><topic>Integrated circuits</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Kawuu W.</creatorcontrib><creatorcontrib>Lin, Chun-Hung</creatorcontrib><creatorcontrib>Hsiao, Chun-Yuan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Kawuu W.</au><au>Lin, Chun-Hung</au><au>Hsiao, Chun-Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A parallel and scalable CAST-based clustering algorithm on GPU</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2014-03-01</date><risdate>2014</risdate><volume>18</volume><issue>3</issue><spage>539</spage><epage>547</epage><pages>539-547</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>The advances in nanometer technology and integrated circuit technology enable the graphics card to attach individual memory and one or more processing units, named GPU, in which most of the graphing instructions can be processed in parallel. Obviously, the computation resource can be used to improve the execution efficiency of not only graphing applications but other time consuming applications like data mining. The Clustering Affinity Search Technique is a famous clustering algorithm, which is widely used in clustering the biological data. In this paper, we will propose an algorithm that can utilize the GPU and the individual memory of graphics card to accelerate the execution. The experimental results show that our proposed algorithm can deliver excellent performance in terms of execution time and is scalable to very large databases.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-013-1074-y</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2014-03, Vol.18 (3), p.539-547
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2917900124
source SpringerLink Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Algorithms
Architecture
Artificial Intelligence
Clustering
Computational Intelligence
Computer memory
Control
Data mining
Design
Efficiency
Engineering
Graphics processing units
Integrated circuits
Mathematical Logic and Foundations
Mechatronics
Methodologies and Application
Robotics
title A parallel and scalable CAST-based clustering algorithm on GPU
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A31%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20parallel%20and%20scalable%20CAST-based%20clustering%20algorithm%20on%20GPU&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Lin,%20Kawuu%20W.&rft.date=2014-03-01&rft.volume=18&rft.issue=3&rft.spage=539&rft.epage=547&rft.pages=539-547&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-013-1074-y&rft_dat=%3Cproquest_cross%3E2917900124%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917900124&rft_id=info:pmid/&rfr_iscdi=true