ϵκ-Curves: controlled local curvature extrema

The κ -curve is a recently published interpolating spline which consists of quadratic Bézier segments passing through input points at the loci of local curvature extrema. We extend this representation to control the magnitudes of local maximum curvature in a new scheme called extended- or ϵ κ -curve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Visual computer 2022-08, Vol.38 (8), p.2723-2738
Hauptverfasser: Miura, Kenjiro T., Gobithaasan, R. U., Salvi, Péter, Wang, Dan, Sekine, Tadatoshi, Usuki, Shin, Inoguchi, Jun-ichi, Kajiwara, Kenji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2738
container_issue 8
container_start_page 2723
container_title The Visual computer
container_volume 38
creator Miura, Kenjiro T.
Gobithaasan, R. U.
Salvi, Péter
Wang, Dan
Sekine, Tadatoshi
Usuki, Shin
Inoguchi, Jun-ichi
Kajiwara, Kenji
description The κ -curve is a recently published interpolating spline which consists of quadratic Bézier segments passing through input points at the loci of local curvature extrema. We extend this representation to control the magnitudes of local maximum curvature in a new scheme called extended- or ϵ κ -curves. κ -curves have been implemented as the curvature tool in Adobe Illustrator ® and Photoshop ® and are highly valued by professional designers. However, because of the limited degrees of freedom of quadratic Bézier curves, it provides no control over the curvature distribution. We propose new methods that enable the modification of local curvature at the interpolation points by degree elevation of the Bernstein basis as well as application of generalized trigonometric basis functions. By using ϵ κ -curves, designers acquire much more ability to produce a variety of expressions, as illustrated by our examples.
doi_str_mv 10.1007/s00371-021-02149-8
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2917900114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917900114</sourcerecordid><originalsourceid>FETCH-LOGICAL-n271t-fe574191adfc1f6111868417a11f4020b4cdd81becf918d9601eb807291395b03</originalsourceid><addsrcrecordid>eNpFkM9KxDAQh4MoWKsv4KngOe5MkjaJNyn-gwUveg5tmohLbdekFV_Miw-hr2TcCh6GYZiPGX4fIacI5wggVxGAS6TAdiU0VXskQ8EZZRzLfZIBSkWZVPqQHMW4gTRLoTOy-v74-qT1HN5cvCjsOExh7HvXFf1om76wadFMc3CFe5-Ce2mOyYFv-uhO_npOHq-vHupbur6_uasv13RgEifqXSkFamw6b9FXiKgqJVA2iF4Ag1bYrlPYOus1qk5XgK5VIJlGrssWeE7OlrvbML7OLk5mM85hSC9NYqROAVK8nPCFitvwPDy58E8hmF8zZjFjkhWzM2MU_wFpgFY9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917900114</pqid></control><display><type>article</type><title>ϵκ-Curves: controlled local curvature extrema</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Miura, Kenjiro T. ; Gobithaasan, R. U. ; Salvi, Péter ; Wang, Dan ; Sekine, Tadatoshi ; Usuki, Shin ; Inoguchi, Jun-ichi ; Kajiwara, Kenji</creator><creatorcontrib>Miura, Kenjiro T. ; Gobithaasan, R. U. ; Salvi, Péter ; Wang, Dan ; Sekine, Tadatoshi ; Usuki, Shin ; Inoguchi, Jun-ichi ; Kajiwara, Kenji</creatorcontrib><description>The κ -curve is a recently published interpolating spline which consists of quadratic Bézier segments passing through input points at the loci of local curvature extrema. We extend this representation to control the magnitudes of local maximum curvature in a new scheme called extended- or ϵ κ -curves. κ -curves have been implemented as the curvature tool in Adobe Illustrator ® and Photoshop ® and are highly valued by professional designers. However, because of the limited degrees of freedom of quadratic Bézier curves, it provides no control over the curvature distribution. We propose new methods that enable the modification of local curvature at the interpolation points by degree elevation of the Bernstein basis as well as application of generalized trigonometric basis functions. By using ϵ κ -curves, designers acquire much more ability to produce a variety of expressions, as illustrated by our examples.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-021-02149-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Basis functions ; Computer Graphics ; Computer Science ; Curvature ; Curves ; Degree elevation ; Design ; Designers ; Image Processing and Computer Vision ; Interpolation ; Mathematical analysis ; Original Article</subject><ispartof>The Visual computer, 2022-08, Vol.38 (8), p.2723-2738</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-n271t-fe574191adfc1f6111868417a11f4020b4cdd81becf918d9601eb807291395b03</cites><orcidid>0000-0001-9326-3130 ; 0000-0002-4363-6346 ; 0000-0002-6584-5739 ; 0000-0003-1906-4998 ; 0000-0003-1813-822X ; 0000-0002-0543-9384 ; 0000-0003-3077-8772 ; 0000-0003-2456-2051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-021-02149-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917900114?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Miura, Kenjiro T.</creatorcontrib><creatorcontrib>Gobithaasan, R. U.</creatorcontrib><creatorcontrib>Salvi, Péter</creatorcontrib><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>Sekine, Tadatoshi</creatorcontrib><creatorcontrib>Usuki, Shin</creatorcontrib><creatorcontrib>Inoguchi, Jun-ichi</creatorcontrib><creatorcontrib>Kajiwara, Kenji</creatorcontrib><title>ϵκ-Curves: controlled local curvature extrema</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>The κ -curve is a recently published interpolating spline which consists of quadratic Bézier segments passing through input points at the loci of local curvature extrema. We extend this representation to control the magnitudes of local maximum curvature in a new scheme called extended- or ϵ κ -curves. κ -curves have been implemented as the curvature tool in Adobe Illustrator ® and Photoshop ® and are highly valued by professional designers. However, because of the limited degrees of freedom of quadratic Bézier curves, it provides no control over the curvature distribution. We propose new methods that enable the modification of local curvature at the interpolation points by degree elevation of the Bernstein basis as well as application of generalized trigonometric basis functions. By using ϵ κ -curves, designers acquire much more ability to produce a variety of expressions, as illustrated by our examples.</description><subject>Artificial Intelligence</subject><subject>Basis functions</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Curvature</subject><subject>Curves</subject><subject>Degree elevation</subject><subject>Design</subject><subject>Designers</subject><subject>Image Processing and Computer Vision</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Original Article</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNpFkM9KxDAQh4MoWKsv4KngOe5MkjaJNyn-gwUveg5tmohLbdekFV_Miw-hr2TcCh6GYZiPGX4fIacI5wggVxGAS6TAdiU0VXskQ8EZZRzLfZIBSkWZVPqQHMW4gTRLoTOy-v74-qT1HN5cvCjsOExh7HvXFf1om76wadFMc3CFe5-Ce2mOyYFv-uhO_npOHq-vHupbur6_uasv13RgEifqXSkFamw6b9FXiKgqJVA2iF4Ag1bYrlPYOus1qk5XgK5VIJlGrssWeE7OlrvbML7OLk5mM85hSC9NYqROAVK8nPCFitvwPDy58E8hmF8zZjFjkhWzM2MU_wFpgFY9</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Miura, Kenjiro T.</creator><creator>Gobithaasan, R. U.</creator><creator>Salvi, Péter</creator><creator>Wang, Dan</creator><creator>Sekine, Tadatoshi</creator><creator>Usuki, Shin</creator><creator>Inoguchi, Jun-ichi</creator><creator>Kajiwara, Kenji</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-9326-3130</orcidid><orcidid>https://orcid.org/0000-0002-4363-6346</orcidid><orcidid>https://orcid.org/0000-0002-6584-5739</orcidid><orcidid>https://orcid.org/0000-0003-1906-4998</orcidid><orcidid>https://orcid.org/0000-0003-1813-822X</orcidid><orcidid>https://orcid.org/0000-0002-0543-9384</orcidid><orcidid>https://orcid.org/0000-0003-3077-8772</orcidid><orcidid>https://orcid.org/0000-0003-2456-2051</orcidid></search><sort><creationdate>20220801</creationdate><title>ϵκ-Curves: controlled local curvature extrema</title><author>Miura, Kenjiro T. ; Gobithaasan, R. U. ; Salvi, Péter ; Wang, Dan ; Sekine, Tadatoshi ; Usuki, Shin ; Inoguchi, Jun-ichi ; Kajiwara, Kenji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-n271t-fe574191adfc1f6111868417a11f4020b4cdd81becf918d9601eb807291395b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Basis functions</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Curvature</topic><topic>Curves</topic><topic>Degree elevation</topic><topic>Design</topic><topic>Designers</topic><topic>Image Processing and Computer Vision</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Original Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miura, Kenjiro T.</creatorcontrib><creatorcontrib>Gobithaasan, R. U.</creatorcontrib><creatorcontrib>Salvi, Péter</creatorcontrib><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>Sekine, Tadatoshi</creatorcontrib><creatorcontrib>Usuki, Shin</creatorcontrib><creatorcontrib>Inoguchi, Jun-ichi</creatorcontrib><creatorcontrib>Kajiwara, Kenji</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miura, Kenjiro T.</au><au>Gobithaasan, R. U.</au><au>Salvi, Péter</au><au>Wang, Dan</au><au>Sekine, Tadatoshi</au><au>Usuki, Shin</au><au>Inoguchi, Jun-ichi</au><au>Kajiwara, Kenji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ϵκ-Curves: controlled local curvature extrema</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>38</volume><issue>8</issue><spage>2723</spage><epage>2738</epage><pages>2723-2738</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>The κ -curve is a recently published interpolating spline which consists of quadratic Bézier segments passing through input points at the loci of local curvature extrema. We extend this representation to control the magnitudes of local maximum curvature in a new scheme called extended- or ϵ κ -curves. κ -curves have been implemented as the curvature tool in Adobe Illustrator ® and Photoshop ® and are highly valued by professional designers. However, because of the limited degrees of freedom of quadratic Bézier curves, it provides no control over the curvature distribution. We propose new methods that enable the modification of local curvature at the interpolation points by degree elevation of the Bernstein basis as well as application of generalized trigonometric basis functions. By using ϵ κ -curves, designers acquire much more ability to produce a variety of expressions, as illustrated by our examples.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-021-02149-8</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9326-3130</orcidid><orcidid>https://orcid.org/0000-0002-4363-6346</orcidid><orcidid>https://orcid.org/0000-0002-6584-5739</orcidid><orcidid>https://orcid.org/0000-0003-1906-4998</orcidid><orcidid>https://orcid.org/0000-0003-1813-822X</orcidid><orcidid>https://orcid.org/0000-0002-0543-9384</orcidid><orcidid>https://orcid.org/0000-0003-3077-8772</orcidid><orcidid>https://orcid.org/0000-0003-2456-2051</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-2789
ispartof The Visual computer, 2022-08, Vol.38 (8), p.2723-2738
issn 0178-2789
1432-2315
language eng
recordid cdi_proquest_journals_2917900114
source Springer Nature - Complete Springer Journals; ProQuest Central
subjects Artificial Intelligence
Basis functions
Computer Graphics
Computer Science
Curvature
Curves
Degree elevation
Design
Designers
Image Processing and Computer Vision
Interpolation
Mathematical analysis
Original Article
title ϵκ-Curves: controlled local curvature extrema
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A49%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CF%B5%CE%BA-Curves:%20controlled%20local%20curvature%20extrema&rft.jtitle=The%20Visual%20computer&rft.au=Miura,%20Kenjiro%20T.&rft.date=2022-08-01&rft.volume=38&rft.issue=8&rft.spage=2723&rft.epage=2738&rft.pages=2723-2738&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-021-02149-8&rft_dat=%3Cproquest_sprin%3E2917900114%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917900114&rft_id=info:pmid/&rfr_iscdi=true