Swarm intelligence and the quest to solve a garbage and recycling collection problem
This work focuses on the application of Swarm Intelligence to a problem of garbage and recycling collection using a swarm of robots. Computational algorithms inspired by nature, such as Particle Swarm Optimization (PSO) and Ant Colony Optimization, have been successfully applied to a range of optimi...
Gespeichert in:
Veröffentlicht in: | Soft computing (Berlin, Germany) Germany), 2013-12, Vol.17 (12), p.2311-2325 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2325 |
---|---|
container_issue | 12 |
container_start_page | 2311 |
container_title | Soft computing (Berlin, Germany) |
container_volume | 17 |
creator | Pessin, Gustavo Sales, Daniel O. Dias, Maurício A. Klaser, Rafael L. Wolf, Denis F. Ueyama, Jó Osório, Fernando S. Vargas, Patrícia A. |
description | This work focuses on the application of Swarm Intelligence to a problem of garbage and recycling collection using a swarm of robots. Computational algorithms inspired by nature, such as Particle Swarm Optimization (PSO) and Ant Colony Optimization, have been successfully applied to a range of optimization problems. Our idea is to train a number of robots to interact with each other, attempting to simulate the way a collective of animals behave, as a single cognitive entity. What we have achieved is a swarm of robots that interacts like a swarm of insects, cooperating with each other accurately and efficiently. We describe two different PSO topologies implemented, showing the obtained results, a comparative evaluation, and an explanation of the rationale behind the choices of topologies that enhanced the PSO algorithm. Moreover, we describe and implement an Ant Colony Optimization (ACO) approach that presents an unusual grid implementation of a robot physical simulation. Hence, generating new concepts and discussions regarding the necessary modifications for the algorithm towards an improved performance. The ACO is then compared to the PSO results in order to choose the best algorithm to solve the proposed problem. |
doi_str_mv | 10.1007/s00500-013-1107-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917897945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917897945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b063a8af59445a1da9bb10e70b491f43fa36ca46705196eefec78009e2edbef53</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvAc3SyySbNUYr_oODBeg7ZdHbdkmZrslX67d12BU-eZhh-773hEXLN4ZYD6LsMUAIw4IJxDpqpEzLhUgimpTanx71gWklxTi5yXgMUXJdiQpZv3y5taBt7DKFtMHqkLq5o_4H0c4e5p31Hcxe-hjNtXKpcMwIJ_d6HNjbUdyGg79su0m3qqoCbS3JWu5Dx6ndOyfvjw3L-zBavTy_z-wXzgqueVaCEm7m6NFKWjq-cqSoOqKGShtdS1E4o76TSUHKjEGv0egZgsMBVhXUppuRm9B1yj8_adbdLcYi0heF6ZrSRB4qPlE9dzglru03txqW95WAP5dmxPDuUZw_lWTVoilGTBzY2mP6c_xf9ACZjcik</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917897945</pqid></control><display><type>article</type><title>Swarm intelligence and the quest to solve a garbage and recycling collection problem</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Pessin, Gustavo ; Sales, Daniel O. ; Dias, Maurício A. ; Klaser, Rafael L. ; Wolf, Denis F. ; Ueyama, Jó ; Osório, Fernando S. ; Vargas, Patrícia A.</creator><creatorcontrib>Pessin, Gustavo ; Sales, Daniel O. ; Dias, Maurício A. ; Klaser, Rafael L. ; Wolf, Denis F. ; Ueyama, Jó ; Osório, Fernando S. ; Vargas, Patrícia A.</creatorcontrib><description>This work focuses on the application of Swarm Intelligence to a problem of garbage and recycling collection using a swarm of robots. Computational algorithms inspired by nature, such as Particle Swarm Optimization (PSO) and Ant Colony Optimization, have been successfully applied to a range of optimization problems. Our idea is to train a number of robots to interact with each other, attempting to simulate the way a collective of animals behave, as a single cognitive entity. What we have achieved is a swarm of robots that interacts like a swarm of insects, cooperating with each other accurately and efficiently. We describe two different PSO topologies implemented, showing the obtained results, a comparative evaluation, and an explanation of the rationale behind the choices of topologies that enhanced the PSO algorithm. Moreover, we describe and implement an Ant Colony Optimization (ACO) approach that presents an unusual grid implementation of a robot physical simulation. Hence, generating new concepts and discussions regarding the necessary modifications for the algorithm towards an improved performance. The ACO is then compared to the PSO results in order to choose the best algorithm to solve the proposed problem.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-013-1107-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Ant colony optimization ; Artificial Intelligence ; Computational Intelligence ; Control ; Engineering ; Garbage collection ; Insects ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Neighborhoods ; Optimization ; Particle swarm optimization ; Physical simulation ; Random variables ; Recycling ; Robotics ; Robots ; Swarm intelligence ; Topology ; Velocity</subject><ispartof>Soft computing (Berlin, Germany), 2013-12, Vol.17 (12), p.2311-2325</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Springer-Verlag Berlin Heidelberg 2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b063a8af59445a1da9bb10e70b491f43fa36ca46705196eefec78009e2edbef53</citedby><cites>FETCH-LOGICAL-c316t-b063a8af59445a1da9bb10e70b491f43fa36ca46705196eefec78009e2edbef53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-013-1107-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917897945?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Pessin, Gustavo</creatorcontrib><creatorcontrib>Sales, Daniel O.</creatorcontrib><creatorcontrib>Dias, Maurício A.</creatorcontrib><creatorcontrib>Klaser, Rafael L.</creatorcontrib><creatorcontrib>Wolf, Denis F.</creatorcontrib><creatorcontrib>Ueyama, Jó</creatorcontrib><creatorcontrib>Osório, Fernando S.</creatorcontrib><creatorcontrib>Vargas, Patrícia A.</creatorcontrib><title>Swarm intelligence and the quest to solve a garbage and recycling collection problem</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>This work focuses on the application of Swarm Intelligence to a problem of garbage and recycling collection using a swarm of robots. Computational algorithms inspired by nature, such as Particle Swarm Optimization (PSO) and Ant Colony Optimization, have been successfully applied to a range of optimization problems. Our idea is to train a number of robots to interact with each other, attempting to simulate the way a collective of animals behave, as a single cognitive entity. What we have achieved is a swarm of robots that interacts like a swarm of insects, cooperating with each other accurately and efficiently. We describe two different PSO topologies implemented, showing the obtained results, a comparative evaluation, and an explanation of the rationale behind the choices of topologies that enhanced the PSO algorithm. Moreover, we describe and implement an Ant Colony Optimization (ACO) approach that presents an unusual grid implementation of a robot physical simulation. Hence, generating new concepts and discussions regarding the necessary modifications for the algorithm towards an improved performance. The ACO is then compared to the PSO results in order to choose the best algorithm to solve the proposed problem.</description><subject>Algorithms</subject><subject>Ant colony optimization</subject><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Engineering</subject><subject>Garbage collection</subject><subject>Insects</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Neighborhoods</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Physical simulation</subject><subject>Random variables</subject><subject>Recycling</subject><subject>Robotics</subject><subject>Robots</subject><subject>Swarm intelligence</subject><subject>Topology</subject><subject>Velocity</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwFvAc3SyySbNUYr_oODBeg7ZdHbdkmZrslX67d12BU-eZhh-773hEXLN4ZYD6LsMUAIw4IJxDpqpEzLhUgimpTanx71gWklxTi5yXgMUXJdiQpZv3y5taBt7DKFtMHqkLq5o_4H0c4e5p31Hcxe-hjNtXKpcMwIJ_d6HNjbUdyGg79su0m3qqoCbS3JWu5Dx6ndOyfvjw3L-zBavTy_z-wXzgqueVaCEm7m6NFKWjq-cqSoOqKGShtdS1E4o76TSUHKjEGv0egZgsMBVhXUppuRm9B1yj8_adbdLcYi0heF6ZrSRB4qPlE9dzglru03txqW95WAP5dmxPDuUZw_lWTVoilGTBzY2mP6c_xf9ACZjcik</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Pessin, Gustavo</creator><creator>Sales, Daniel O.</creator><creator>Dias, Maurício A.</creator><creator>Klaser, Rafael L.</creator><creator>Wolf, Denis F.</creator><creator>Ueyama, Jó</creator><creator>Osório, Fernando S.</creator><creator>Vargas, Patrícia A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20131201</creationdate><title>Swarm intelligence and the quest to solve a garbage and recycling collection problem</title><author>Pessin, Gustavo ; Sales, Daniel O. ; Dias, Maurício A. ; Klaser, Rafael L. ; Wolf, Denis F. ; Ueyama, Jó ; Osório, Fernando S. ; Vargas, Patrícia A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b063a8af59445a1da9bb10e70b491f43fa36ca46705196eefec78009e2edbef53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Ant colony optimization</topic><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Engineering</topic><topic>Garbage collection</topic><topic>Insects</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Neighborhoods</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Physical simulation</topic><topic>Random variables</topic><topic>Recycling</topic><topic>Robotics</topic><topic>Robots</topic><topic>Swarm intelligence</topic><topic>Topology</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pessin, Gustavo</creatorcontrib><creatorcontrib>Sales, Daniel O.</creatorcontrib><creatorcontrib>Dias, Maurício A.</creatorcontrib><creatorcontrib>Klaser, Rafael L.</creatorcontrib><creatorcontrib>Wolf, Denis F.</creatorcontrib><creatorcontrib>Ueyama, Jó</creatorcontrib><creatorcontrib>Osório, Fernando S.</creatorcontrib><creatorcontrib>Vargas, Patrícia A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pessin, Gustavo</au><au>Sales, Daniel O.</au><au>Dias, Maurício A.</au><au>Klaser, Rafael L.</au><au>Wolf, Denis F.</au><au>Ueyama, Jó</au><au>Osório, Fernando S.</au><au>Vargas, Patrícia A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Swarm intelligence and the quest to solve a garbage and recycling collection problem</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>17</volume><issue>12</issue><spage>2311</spage><epage>2325</epage><pages>2311-2325</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>This work focuses on the application of Swarm Intelligence to a problem of garbage and recycling collection using a swarm of robots. Computational algorithms inspired by nature, such as Particle Swarm Optimization (PSO) and Ant Colony Optimization, have been successfully applied to a range of optimization problems. Our idea is to train a number of robots to interact with each other, attempting to simulate the way a collective of animals behave, as a single cognitive entity. What we have achieved is a swarm of robots that interacts like a swarm of insects, cooperating with each other accurately and efficiently. We describe two different PSO topologies implemented, showing the obtained results, a comparative evaluation, and an explanation of the rationale behind the choices of topologies that enhanced the PSO algorithm. Moreover, we describe and implement an Ant Colony Optimization (ACO) approach that presents an unusual grid implementation of a robot physical simulation. Hence, generating new concepts and discussions regarding the necessary modifications for the algorithm towards an improved performance. The ACO is then compared to the PSO results in order to choose the best algorithm to solve the proposed problem.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-013-1107-6</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-7643 |
ispartof | Soft computing (Berlin, Germany), 2013-12, Vol.17 (12), p.2311-2325 |
issn | 1432-7643 1433-7479 |
language | eng |
recordid | cdi_proquest_journals_2917897945 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Algorithms Ant colony optimization Artificial Intelligence Computational Intelligence Control Engineering Garbage collection Insects Mathematical Logic and Foundations Mechatronics Methodologies and Application Neighborhoods Optimization Particle swarm optimization Physical simulation Random variables Recycling Robotics Robots Swarm intelligence Topology Velocity |
title | Swarm intelligence and the quest to solve a garbage and recycling collection problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A59%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Swarm%20intelligence%20and%20the%20quest%20to%20solve%20a%20garbage%20and%20recycling%20collection%20problem&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Pessin,%20Gustavo&rft.date=2013-12-01&rft.volume=17&rft.issue=12&rft.spage=2311&rft.epage=2325&rft.pages=2311-2325&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-013-1107-6&rft_dat=%3Cproquest_cross%3E2917897945%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917897945&rft_id=info:pmid/&rfr_iscdi=true |