Cancelable biometric security system based on advanced chaotic maps
In recent years, the protection of human biometrics has witnessed an exponential growth. Fingerprint recognition has been utilized for cell phone authentication, biometric passports, and airport security. To improve the fingerprint recognition process, different approaches have been proposed. To kee...
Gespeichert in:
Veröffentlicht in: | The Visual computer 2022-06, Vol.38 (6), p.2171-2187 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2187 |
---|---|
container_issue | 6 |
container_start_page | 2171 |
container_title | The Visual computer |
container_volume | 38 |
creator | El-Hameed, Hayam A. Abd Ramadan, Noha El-Shafai, Walid Khalaf, Ashraf A. M. Ahmed, Hossam Eldin H. Elkhamy, Said E. El-Samie, Fathi E. Abd |
description | In recent years, the protection of human biometrics has witnessed an exponential growth. Fingerprint recognition has been utilized for cell phone authentication, biometric passports, and airport security. To improve the fingerprint recognition process, different approaches have been proposed. To keep biometrics away from hacking attempts, non-invertible transformations or encryption algorithms have been proposed to provide cancelable biometric templates for biometric protection. This paper presents a scheme that depends on chaos-based image encryption with different chaotic maps. The chaotic maps are used instead of the simple random number generator to overcome the loss of randomness in the case of a large number of images. To preserve the authentication performance, we should convolve the training images with random kernels to build the encrypted biometric templates. We can obtain different templates from the same biometrics by varying the chaotic map used to generate the convolution kernels. A comparative study is introduced between the used chaotic maps to determine the one, which gives the best performance. The simulation experiments reveal that the enhanced quadratic map 3 achieves the lowest error probability of 3.861% in the cancelable fingerprint recognition system. The cancelable fingerprint recognition system based on this chaotic map achieves the largest probability of detection of 96.139%, with an Equal Error Rate (EER) of 0.593. |
doi_str_mv | 10.1007/s00371-021-02276-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917893040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917893040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7ebb53186b8e3cd5c1b4813cb83c66a62f5089eb7368186cc9401b9290acac033</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gKeA5-gkaZvkKEVdYcGLnkMyzWqXbbsmXaFvb9YK3jwMw8D3zzAfIdccbjmAuksAUnEG4lhCVUyckAUvpGBC8vKULIArzYTS5pxcpLSFPKvCLEhdux7DzvldoL4dujDGFmkKeIjtONE0pTF01LsUGjr01DVfR76h-OGGMZOd26dLcrZxuxSufvuSvD0-vNYrtn55eq7v1wwlNyNTwftScl15HSQ2JXJfaC7Ra4lV5SqxKUGb4JWsdKYQTQHcG2HAoUOQcklu5r37OHweQhrtdjjEPp-0wuT_jIQCMiVmCuOQUgwbu49t5-JkOdijLDvLslmW_ZFlRQ7JOZQy3L-H-Lf6n9Q3Vu5r6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917893040</pqid></control><display><type>article</type><title>Cancelable biometric security system based on advanced chaotic maps</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>El-Hameed, Hayam A. Abd ; Ramadan, Noha ; El-Shafai, Walid ; Khalaf, Ashraf A. M. ; Ahmed, Hossam Eldin H. ; Elkhamy, Said E. ; El-Samie, Fathi E. Abd</creator><creatorcontrib>El-Hameed, Hayam A. Abd ; Ramadan, Noha ; El-Shafai, Walid ; Khalaf, Ashraf A. M. ; Ahmed, Hossam Eldin H. ; Elkhamy, Said E. ; El-Samie, Fathi E. Abd</creatorcontrib><description>In recent years, the protection of human biometrics has witnessed an exponential growth. Fingerprint recognition has been utilized for cell phone authentication, biometric passports, and airport security. To improve the fingerprint recognition process, different approaches have been proposed. To keep biometrics away from hacking attempts, non-invertible transformations or encryption algorithms have been proposed to provide cancelable biometric templates for biometric protection. This paper presents a scheme that depends on chaos-based image encryption with different chaotic maps. The chaotic maps are used instead of the simple random number generator to overcome the loss of randomness in the case of a large number of images. To preserve the authentication performance, we should convolve the training images with random kernels to build the encrypted biometric templates. We can obtain different templates from the same biometrics by varying the chaotic map used to generate the convolution kernels. A comparative study is introduced between the used chaotic maps to determine the one, which gives the best performance. The simulation experiments reveal that the enhanced quadratic map 3 achieves the lowest error probability of 3.861% in the cancelable fingerprint recognition system. The cancelable fingerprint recognition system based on this chaotic map achieves the largest probability of detection of 96.139%, with an Equal Error Rate (EER) of 0.593.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-021-02276-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Airport security ; Algorithms ; Artificial Intelligence ; Biometric recognition systems ; Biometrics ; Chaos theory ; Comparative studies ; Computer Graphics ; Computer Science ; Deep learning ; Encryption ; Fingerprint verification ; Image Processing and Computer Vision ; Original Article ; Passports ; Privacy ; Random numbers ; Security systems</subject><ispartof>The Visual computer, 2022-06, Vol.38 (6), p.2171-2187</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7ebb53186b8e3cd5c1b4813cb83c66a62f5089eb7368186cc9401b9290acac033</citedby><cites>FETCH-LOGICAL-c319t-7ebb53186b8e3cd5c1b4813cb83c66a62f5089eb7368186cc9401b9290acac033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-021-02276-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917893040?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>El-Hameed, Hayam A. Abd</creatorcontrib><creatorcontrib>Ramadan, Noha</creatorcontrib><creatorcontrib>El-Shafai, Walid</creatorcontrib><creatorcontrib>Khalaf, Ashraf A. M.</creatorcontrib><creatorcontrib>Ahmed, Hossam Eldin H.</creatorcontrib><creatorcontrib>Elkhamy, Said E.</creatorcontrib><creatorcontrib>El-Samie, Fathi E. Abd</creatorcontrib><title>Cancelable biometric security system based on advanced chaotic maps</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>In recent years, the protection of human biometrics has witnessed an exponential growth. Fingerprint recognition has been utilized for cell phone authentication, biometric passports, and airport security. To improve the fingerprint recognition process, different approaches have been proposed. To keep biometrics away from hacking attempts, non-invertible transformations or encryption algorithms have been proposed to provide cancelable biometric templates for biometric protection. This paper presents a scheme that depends on chaos-based image encryption with different chaotic maps. The chaotic maps are used instead of the simple random number generator to overcome the loss of randomness in the case of a large number of images. To preserve the authentication performance, we should convolve the training images with random kernels to build the encrypted biometric templates. We can obtain different templates from the same biometrics by varying the chaotic map used to generate the convolution kernels. A comparative study is introduced between the used chaotic maps to determine the one, which gives the best performance. The simulation experiments reveal that the enhanced quadratic map 3 achieves the lowest error probability of 3.861% in the cancelable fingerprint recognition system. The cancelable fingerprint recognition system based on this chaotic map achieves the largest probability of detection of 96.139%, with an Equal Error Rate (EER) of 0.593.</description><subject>Airport security</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Biometric recognition systems</subject><subject>Biometrics</subject><subject>Chaos theory</subject><subject>Comparative studies</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Deep learning</subject><subject>Encryption</subject><subject>Fingerprint verification</subject><subject>Image Processing and Computer Vision</subject><subject>Original Article</subject><subject>Passports</subject><subject>Privacy</subject><subject>Random numbers</subject><subject>Security systems</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMFKxDAQhoMouK6-gKeA5-gkaZvkKEVdYcGLnkMyzWqXbbsmXaFvb9YK3jwMw8D3zzAfIdccbjmAuksAUnEG4lhCVUyckAUvpGBC8vKULIArzYTS5pxcpLSFPKvCLEhdux7DzvldoL4dujDGFmkKeIjtONE0pTF01LsUGjr01DVfR76h-OGGMZOd26dLcrZxuxSufvuSvD0-vNYrtn55eq7v1wwlNyNTwftScl15HSQ2JXJfaC7Ra4lV5SqxKUGb4JWsdKYQTQHcG2HAoUOQcklu5r37OHweQhrtdjjEPp-0wuT_jIQCMiVmCuOQUgwbu49t5-JkOdijLDvLslmW_ZFlRQ7JOZQy3L-H-Lf6n9Q3Vu5r6A</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>El-Hameed, Hayam A. Abd</creator><creator>Ramadan, Noha</creator><creator>El-Shafai, Walid</creator><creator>Khalaf, Ashraf A. M.</creator><creator>Ahmed, Hossam Eldin H.</creator><creator>Elkhamy, Said E.</creator><creator>El-Samie, Fathi E. Abd</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220601</creationdate><title>Cancelable biometric security system based on advanced chaotic maps</title><author>El-Hameed, Hayam A. Abd ; Ramadan, Noha ; El-Shafai, Walid ; Khalaf, Ashraf A. M. ; Ahmed, Hossam Eldin H. ; Elkhamy, Said E. ; El-Samie, Fathi E. Abd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7ebb53186b8e3cd5c1b4813cb83c66a62f5089eb7368186cc9401b9290acac033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Airport security</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Biometric recognition systems</topic><topic>Biometrics</topic><topic>Chaos theory</topic><topic>Comparative studies</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Deep learning</topic><topic>Encryption</topic><topic>Fingerprint verification</topic><topic>Image Processing and Computer Vision</topic><topic>Original Article</topic><topic>Passports</topic><topic>Privacy</topic><topic>Random numbers</topic><topic>Security systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El-Hameed, Hayam A. Abd</creatorcontrib><creatorcontrib>Ramadan, Noha</creatorcontrib><creatorcontrib>El-Shafai, Walid</creatorcontrib><creatorcontrib>Khalaf, Ashraf A. M.</creatorcontrib><creatorcontrib>Ahmed, Hossam Eldin H.</creatorcontrib><creatorcontrib>Elkhamy, Said E.</creatorcontrib><creatorcontrib>El-Samie, Fathi E. Abd</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El-Hameed, Hayam A. Abd</au><au>Ramadan, Noha</au><au>El-Shafai, Walid</au><au>Khalaf, Ashraf A. M.</au><au>Ahmed, Hossam Eldin H.</au><au>Elkhamy, Said E.</au><au>El-Samie, Fathi E. Abd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cancelable biometric security system based on advanced chaotic maps</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>38</volume><issue>6</issue><spage>2171</spage><epage>2187</epage><pages>2171-2187</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>In recent years, the protection of human biometrics has witnessed an exponential growth. Fingerprint recognition has been utilized for cell phone authentication, biometric passports, and airport security. To improve the fingerprint recognition process, different approaches have been proposed. To keep biometrics away from hacking attempts, non-invertible transformations or encryption algorithms have been proposed to provide cancelable biometric templates for biometric protection. This paper presents a scheme that depends on chaos-based image encryption with different chaotic maps. The chaotic maps are used instead of the simple random number generator to overcome the loss of randomness in the case of a large number of images. To preserve the authentication performance, we should convolve the training images with random kernels to build the encrypted biometric templates. We can obtain different templates from the same biometrics by varying the chaotic map used to generate the convolution kernels. A comparative study is introduced between the used chaotic maps to determine the one, which gives the best performance. The simulation experiments reveal that the enhanced quadratic map 3 achieves the lowest error probability of 3.861% in the cancelable fingerprint recognition system. The cancelable fingerprint recognition system based on this chaotic map achieves the largest probability of detection of 96.139%, with an Equal Error Rate (EER) of 0.593.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-021-02276-2</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-2789 |
ispartof | The Visual computer, 2022-06, Vol.38 (6), p.2171-2187 |
issn | 0178-2789 1432-2315 |
language | eng |
recordid | cdi_proquest_journals_2917893040 |
source | SpringerLink Journals; ProQuest Central |
subjects | Airport security Algorithms Artificial Intelligence Biometric recognition systems Biometrics Chaos theory Comparative studies Computer Graphics Computer Science Deep learning Encryption Fingerprint verification Image Processing and Computer Vision Original Article Passports Privacy Random numbers Security systems |
title | Cancelable biometric security system based on advanced chaotic maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A03%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cancelable%20biometric%20security%20system%20based%20on%20advanced%20chaotic%20maps&rft.jtitle=The%20Visual%20computer&rft.au=El-Hameed,%20Hayam%20A.%20Abd&rft.date=2022-06-01&rft.volume=38&rft.issue=6&rft.spage=2171&rft.epage=2187&rft.pages=2171-2187&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-021-02276-2&rft_dat=%3Cproquest_cross%3E2917893040%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917893040&rft_id=info:pmid/&rfr_iscdi=true |