Memetic algorithm using multi-surrogates for computationally expensive optimization problems

In this paper, we present a multi-surrogates assisted memetic algorithm for solving optimization problems with computationally expensive fitness functions. The essential backbone of our framework is an evolutionary algorithm coupled with a local search solver that employs multi-surrogate in the spir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2007-08, Vol.11 (10), p.957-971
Hauptverfasser: Zhou, Zongzhao, Ong, Yew Soon, Lim, Meng Hiot, Lee, Bu Sung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!