Optimization-based key frame extraction for motion capture animation

In this paper, we present a new solution for extracting key frames from motion capture data using an optimization algorithm to obtain compact and sparse key frame data that can represent the original dense human body motion capture animation. The use of the genetic algorithm helps determine the opti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Visual computer 2013, Vol.29 (1), p.85-95
Hauptverfasser: Liu, Xian-mei, Hao, Ai-min, Zhao, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 95
container_issue 1
container_start_page 85
container_title The Visual computer
container_volume 29
creator Liu, Xian-mei
Hao, Ai-min
Zhao, Dan
description In this paper, we present a new solution for extracting key frames from motion capture data using an optimization algorithm to obtain compact and sparse key frame data that can represent the original dense human body motion capture animation. The use of the genetic algorithm helps determine the optimal solution with global exploration capability while the use of a probabilistic simplex method helps expedite the speed of convergence. By finding the chromosome that maximizes the fitness function, the algorithm provides the optimal number of key frames as well as the low reconstruction error with an ordinary interpolation technique. The reconstruction error is computed between the original motion and the reconstruction one by the weighted differences of joint positions and velocities. The resulting set of key frames is obtained by iterative application of the algorithm with initial populations generated randomly and intelligently. We also present experiments which demonstrate that the method can effectively extract key frames with a high compression ratio and reconstruct all other non key frames with high quality.
doi_str_mv 10.1007/s00371-012-0676-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917892622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917892622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e5670033c75267cb863ceae2f6dc7380521d8ee71ae74ec2c246717e3f8497a3</originalsourceid><addsrcrecordid>eNp1UE1PwzAMjRBIjMEP4FaJcyB22rg9ovEpTdpl9yjLXNTB2pJ0EuPXk61InDjZlt97fn5CXIO6BaXoLiqlCaQClMqQkXAiJpBrlKihOBUTBVRKpLI6FxcxblSaKa8m4mHRD822-XZD07Vy5SKvs3feZ3VwW874awjOH1ZZ3YVs2x1b7_phFzhzbbM98i7FWe0-Il_91qlYPj0uZy9yvnh-nd3PpddgBsmFoWRTeyrQkF-VRnt2jLVZe9KlKhDWJTOBY8rZo8fcEBDruswrcnoqbkbZPnSfO46D3XS70KaLFqv0X4UGMaFgRPnQxRi4tn1IPsPegrKHrOyYlU1Z2UNWFhIHR05M2PaNw5_y_6QfzoFr7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917892622</pqid></control><display><type>article</type><title>Optimization-based key frame extraction for motion capture animation</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Liu, Xian-mei ; Hao, Ai-min ; Zhao, Dan</creator><creatorcontrib>Liu, Xian-mei ; Hao, Ai-min ; Zhao, Dan</creatorcontrib><description>In this paper, we present a new solution for extracting key frames from motion capture data using an optimization algorithm to obtain compact and sparse key frame data that can represent the original dense human body motion capture animation. The use of the genetic algorithm helps determine the optimal solution with global exploration capability while the use of a probabilistic simplex method helps expedite the speed of convergence. By finding the chromosome that maximizes the fitness function, the algorithm provides the optimal number of key frames as well as the low reconstruction error with an ordinary interpolation technique. The reconstruction error is computed between the original motion and the reconstruction one by the weighted differences of joint positions and velocities. The resulting set of key frames is obtained by iterative application of the algorithm with initial populations generated randomly and intelligently. We also present experiments which demonstrate that the method can effectively extract key frames with a high compression ratio and reconstruct all other non key frames with high quality.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-012-0676-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Animation ; Artificial Intelligence ; Chromosomes ; Compression ratio ; Computer Graphics ; Computer Science ; Decomposition ; Frames ; Genetic algorithms ; Human motion ; Image Processing and Computer Vision ; Interpolation ; Iterative methods ; Motion capture ; Mutation ; Optimization ; Original Article ; Reconstruction ; Simplex method</subject><ispartof>The Visual computer, 2013, Vol.29 (1), p.85-95</ispartof><rights>Springer-Verlag 2012</rights><rights>Springer-Verlag 2012.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e5670033c75267cb863ceae2f6dc7380521d8ee71ae74ec2c246717e3f8497a3</citedby><cites>FETCH-LOGICAL-c316t-e5670033c75267cb863ceae2f6dc7380521d8ee71ae74ec2c246717e3f8497a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-012-0676-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917892622?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Liu, Xian-mei</creatorcontrib><creatorcontrib>Hao, Ai-min</creatorcontrib><creatorcontrib>Zhao, Dan</creatorcontrib><title>Optimization-based key frame extraction for motion capture animation</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>In this paper, we present a new solution for extracting key frames from motion capture data using an optimization algorithm to obtain compact and sparse key frame data that can represent the original dense human body motion capture animation. The use of the genetic algorithm helps determine the optimal solution with global exploration capability while the use of a probabilistic simplex method helps expedite the speed of convergence. By finding the chromosome that maximizes the fitness function, the algorithm provides the optimal number of key frames as well as the low reconstruction error with an ordinary interpolation technique. The reconstruction error is computed between the original motion and the reconstruction one by the weighted differences of joint positions and velocities. The resulting set of key frames is obtained by iterative application of the algorithm with initial populations generated randomly and intelligently. We also present experiments which demonstrate that the method can effectively extract key frames with a high compression ratio and reconstruct all other non key frames with high quality.</description><subject>Animation</subject><subject>Artificial Intelligence</subject><subject>Chromosomes</subject><subject>Compression ratio</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Decomposition</subject><subject>Frames</subject><subject>Genetic algorithms</subject><subject>Human motion</subject><subject>Image Processing and Computer Vision</subject><subject>Interpolation</subject><subject>Iterative methods</subject><subject>Motion capture</subject><subject>Mutation</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Reconstruction</subject><subject>Simplex method</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UE1PwzAMjRBIjMEP4FaJcyB22rg9ovEpTdpl9yjLXNTB2pJ0EuPXk61InDjZlt97fn5CXIO6BaXoLiqlCaQClMqQkXAiJpBrlKihOBUTBVRKpLI6FxcxblSaKa8m4mHRD822-XZD07Vy5SKvs3feZ3VwW874awjOH1ZZ3YVs2x1b7_phFzhzbbM98i7FWe0-Il_91qlYPj0uZy9yvnh-nd3PpddgBsmFoWRTeyrQkF-VRnt2jLVZe9KlKhDWJTOBY8rZo8fcEBDruswrcnoqbkbZPnSfO46D3XS70KaLFqv0X4UGMaFgRPnQxRi4tn1IPsPegrKHrOyYlU1Z2UNWFhIHR05M2PaNw5_y_6QfzoFr7g</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Liu, Xian-mei</creator><creator>Hao, Ai-min</creator><creator>Zhao, Dan</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>2013</creationdate><title>Optimization-based key frame extraction for motion capture animation</title><author>Liu, Xian-mei ; Hao, Ai-min ; Zhao, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e5670033c75267cb863ceae2f6dc7380521d8ee71ae74ec2c246717e3f8497a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animation</topic><topic>Artificial Intelligence</topic><topic>Chromosomes</topic><topic>Compression ratio</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Decomposition</topic><topic>Frames</topic><topic>Genetic algorithms</topic><topic>Human motion</topic><topic>Image Processing and Computer Vision</topic><topic>Interpolation</topic><topic>Iterative methods</topic><topic>Motion capture</topic><topic>Mutation</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Reconstruction</topic><topic>Simplex method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xian-mei</creatorcontrib><creatorcontrib>Hao, Ai-min</creatorcontrib><creatorcontrib>Zhao, Dan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xian-mei</au><au>Hao, Ai-min</au><au>Zhao, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization-based key frame extraction for motion capture animation</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2013</date><risdate>2013</risdate><volume>29</volume><issue>1</issue><spage>85</spage><epage>95</epage><pages>85-95</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>In this paper, we present a new solution for extracting key frames from motion capture data using an optimization algorithm to obtain compact and sparse key frame data that can represent the original dense human body motion capture animation. The use of the genetic algorithm helps determine the optimal solution with global exploration capability while the use of a probabilistic simplex method helps expedite the speed of convergence. By finding the chromosome that maximizes the fitness function, the algorithm provides the optimal number of key frames as well as the low reconstruction error with an ordinary interpolation technique. The reconstruction error is computed between the original motion and the reconstruction one by the weighted differences of joint positions and velocities. The resulting set of key frames is obtained by iterative application of the algorithm with initial populations generated randomly and intelligently. We also present experiments which demonstrate that the method can effectively extract key frames with a high compression ratio and reconstruct all other non key frames with high quality.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00371-012-0676-1</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-2789
ispartof The Visual computer, 2013, Vol.29 (1), p.85-95
issn 0178-2789
1432-2315
language eng
recordid cdi_proquest_journals_2917892622
source SpringerLink Journals; ProQuest Central
subjects Animation
Artificial Intelligence
Chromosomes
Compression ratio
Computer Graphics
Computer Science
Decomposition
Frames
Genetic algorithms
Human motion
Image Processing and Computer Vision
Interpolation
Iterative methods
Motion capture
Mutation
Optimization
Original Article
Reconstruction
Simplex method
title Optimization-based key frame extraction for motion capture animation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T06%3A22%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization-based%20key%20frame%20extraction%20for%20motion%20capture%20animation&rft.jtitle=The%20Visual%20computer&rft.au=Liu,%20Xian-mei&rft.date=2013&rft.volume=29&rft.issue=1&rft.spage=85&rft.epage=95&rft.pages=85-95&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-012-0676-1&rft_dat=%3Cproquest_cross%3E2917892622%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917892622&rft_id=info:pmid/&rfr_iscdi=true