Optimization-based key frame extraction for motion capture animation
In this paper, we present a new solution for extracting key frames from motion capture data using an optimization algorithm to obtain compact and sparse key frame data that can represent the original dense human body motion capture animation. The use of the genetic algorithm helps determine the opti...
Gespeichert in:
Veröffentlicht in: | The Visual computer 2013, Vol.29 (1), p.85-95 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 95 |
---|---|
container_issue | 1 |
container_start_page | 85 |
container_title | The Visual computer |
container_volume | 29 |
creator | Liu, Xian-mei Hao, Ai-min Zhao, Dan |
description | In this paper, we present a new solution for extracting key frames from motion capture data using an optimization algorithm to obtain compact and sparse key frame data that can represent the original dense human body motion capture animation. The use of the genetic algorithm helps determine the optimal solution with global exploration capability while the use of a probabilistic simplex method helps expedite the speed of convergence. By finding the chromosome that maximizes the fitness function, the algorithm provides the optimal number of key frames as well as the low reconstruction error with an ordinary interpolation technique. The reconstruction error is computed between the original motion and the reconstruction one by the weighted differences of joint positions and velocities. The resulting set of key frames is obtained by iterative application of the algorithm with initial populations generated randomly and intelligently. We also present experiments which demonstrate that the method can effectively extract key frames with a high compression ratio and reconstruct all other non key frames with high quality. |
doi_str_mv | 10.1007/s00371-012-0676-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917892622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917892622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e5670033c75267cb863ceae2f6dc7380521d8ee71ae74ec2c246717e3f8497a3</originalsourceid><addsrcrecordid>eNp1UE1PwzAMjRBIjMEP4FaJcyB22rg9ovEpTdpl9yjLXNTB2pJ0EuPXk61InDjZlt97fn5CXIO6BaXoLiqlCaQClMqQkXAiJpBrlKihOBUTBVRKpLI6FxcxblSaKa8m4mHRD822-XZD07Vy5SKvs3feZ3VwW874awjOH1ZZ3YVs2x1b7_phFzhzbbM98i7FWe0-Il_91qlYPj0uZy9yvnh-nd3PpddgBsmFoWRTeyrQkF-VRnt2jLVZe9KlKhDWJTOBY8rZo8fcEBDruswrcnoqbkbZPnSfO46D3XS70KaLFqv0X4UGMaFgRPnQxRi4tn1IPsPegrKHrOyYlU1Z2UNWFhIHR05M2PaNw5_y_6QfzoFr7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917892622</pqid></control><display><type>article</type><title>Optimization-based key frame extraction for motion capture animation</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Liu, Xian-mei ; Hao, Ai-min ; Zhao, Dan</creator><creatorcontrib>Liu, Xian-mei ; Hao, Ai-min ; Zhao, Dan</creatorcontrib><description>In this paper, we present a new solution for extracting key frames from motion capture data using an optimization algorithm to obtain compact and sparse key frame data that can represent the original dense human body motion capture animation. The use of the genetic algorithm helps determine the optimal solution with global exploration capability while the use of a probabilistic simplex method helps expedite the speed of convergence. By finding the chromosome that maximizes the fitness function, the algorithm provides the optimal number of key frames as well as the low reconstruction error with an ordinary interpolation technique. The reconstruction error is computed between the original motion and the reconstruction one by the weighted differences of joint positions and velocities. The resulting set of key frames is obtained by iterative application of the algorithm with initial populations generated randomly and intelligently. We also present experiments which demonstrate that the method can effectively extract key frames with a high compression ratio and reconstruct all other non key frames with high quality.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-012-0676-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Animation ; Artificial Intelligence ; Chromosomes ; Compression ratio ; Computer Graphics ; Computer Science ; Decomposition ; Frames ; Genetic algorithms ; Human motion ; Image Processing and Computer Vision ; Interpolation ; Iterative methods ; Motion capture ; Mutation ; Optimization ; Original Article ; Reconstruction ; Simplex method</subject><ispartof>The Visual computer, 2013, Vol.29 (1), p.85-95</ispartof><rights>Springer-Verlag 2012</rights><rights>Springer-Verlag 2012.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e5670033c75267cb863ceae2f6dc7380521d8ee71ae74ec2c246717e3f8497a3</citedby><cites>FETCH-LOGICAL-c316t-e5670033c75267cb863ceae2f6dc7380521d8ee71ae74ec2c246717e3f8497a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-012-0676-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917892622?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Liu, Xian-mei</creatorcontrib><creatorcontrib>Hao, Ai-min</creatorcontrib><creatorcontrib>Zhao, Dan</creatorcontrib><title>Optimization-based key frame extraction for motion capture animation</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>In this paper, we present a new solution for extracting key frames from motion capture data using an optimization algorithm to obtain compact and sparse key frame data that can represent the original dense human body motion capture animation. The use of the genetic algorithm helps determine the optimal solution with global exploration capability while the use of a probabilistic simplex method helps expedite the speed of convergence. By finding the chromosome that maximizes the fitness function, the algorithm provides the optimal number of key frames as well as the low reconstruction error with an ordinary interpolation technique. The reconstruction error is computed between the original motion and the reconstruction one by the weighted differences of joint positions and velocities. The resulting set of key frames is obtained by iterative application of the algorithm with initial populations generated randomly and intelligently. We also present experiments which demonstrate that the method can effectively extract key frames with a high compression ratio and reconstruct all other non key frames with high quality.</description><subject>Animation</subject><subject>Artificial Intelligence</subject><subject>Chromosomes</subject><subject>Compression ratio</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Decomposition</subject><subject>Frames</subject><subject>Genetic algorithms</subject><subject>Human motion</subject><subject>Image Processing and Computer Vision</subject><subject>Interpolation</subject><subject>Iterative methods</subject><subject>Motion capture</subject><subject>Mutation</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Reconstruction</subject><subject>Simplex method</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UE1PwzAMjRBIjMEP4FaJcyB22rg9ovEpTdpl9yjLXNTB2pJ0EuPXk61InDjZlt97fn5CXIO6BaXoLiqlCaQClMqQkXAiJpBrlKihOBUTBVRKpLI6FxcxblSaKa8m4mHRD822-XZD07Vy5SKvs3feZ3VwW874awjOH1ZZ3YVs2x1b7_phFzhzbbM98i7FWe0-Il_91qlYPj0uZy9yvnh-nd3PpddgBsmFoWRTeyrQkF-VRnt2jLVZe9KlKhDWJTOBY8rZo8fcEBDruswrcnoqbkbZPnSfO46D3XS70KaLFqv0X4UGMaFgRPnQxRi4tn1IPsPegrKHrOyYlU1Z2UNWFhIHR05M2PaNw5_y_6QfzoFr7g</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Liu, Xian-mei</creator><creator>Hao, Ai-min</creator><creator>Zhao, Dan</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>2013</creationdate><title>Optimization-based key frame extraction for motion capture animation</title><author>Liu, Xian-mei ; Hao, Ai-min ; Zhao, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e5670033c75267cb863ceae2f6dc7380521d8ee71ae74ec2c246717e3f8497a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animation</topic><topic>Artificial Intelligence</topic><topic>Chromosomes</topic><topic>Compression ratio</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Decomposition</topic><topic>Frames</topic><topic>Genetic algorithms</topic><topic>Human motion</topic><topic>Image Processing and Computer Vision</topic><topic>Interpolation</topic><topic>Iterative methods</topic><topic>Motion capture</topic><topic>Mutation</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Reconstruction</topic><topic>Simplex method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xian-mei</creatorcontrib><creatorcontrib>Hao, Ai-min</creatorcontrib><creatorcontrib>Zhao, Dan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xian-mei</au><au>Hao, Ai-min</au><au>Zhao, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization-based key frame extraction for motion capture animation</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2013</date><risdate>2013</risdate><volume>29</volume><issue>1</issue><spage>85</spage><epage>95</epage><pages>85-95</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>In this paper, we present a new solution for extracting key frames from motion capture data using an optimization algorithm to obtain compact and sparse key frame data that can represent the original dense human body motion capture animation. The use of the genetic algorithm helps determine the optimal solution with global exploration capability while the use of a probabilistic simplex method helps expedite the speed of convergence. By finding the chromosome that maximizes the fitness function, the algorithm provides the optimal number of key frames as well as the low reconstruction error with an ordinary interpolation technique. The reconstruction error is computed between the original motion and the reconstruction one by the weighted differences of joint positions and velocities. The resulting set of key frames is obtained by iterative application of the algorithm with initial populations generated randomly and intelligently. We also present experiments which demonstrate that the method can effectively extract key frames with a high compression ratio and reconstruct all other non key frames with high quality.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00371-012-0676-1</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-2789 |
ispartof | The Visual computer, 2013, Vol.29 (1), p.85-95 |
issn | 0178-2789 1432-2315 |
language | eng |
recordid | cdi_proquest_journals_2917892622 |
source | SpringerLink Journals; ProQuest Central |
subjects | Animation Artificial Intelligence Chromosomes Compression ratio Computer Graphics Computer Science Decomposition Frames Genetic algorithms Human motion Image Processing and Computer Vision Interpolation Iterative methods Motion capture Mutation Optimization Original Article Reconstruction Simplex method |
title | Optimization-based key frame extraction for motion capture animation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T06%3A22%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization-based%20key%20frame%20extraction%20for%20motion%20capture%20animation&rft.jtitle=The%20Visual%20computer&rft.au=Liu,%20Xian-mei&rft.date=2013&rft.volume=29&rft.issue=1&rft.spage=85&rft.epage=95&rft.pages=85-95&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-012-0676-1&rft_dat=%3Cproquest_cross%3E2917892622%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917892622&rft_id=info:pmid/&rfr_iscdi=true |