Uncertainty visualization for variable associations analysis

Uncertainty is inevitable in scientific simulations. As the increase in computing power, ensemble data have been generated for multiple variables. Uncertainty has become a great challenge to the analysis of variable associations for multivariate ensemble data, as the variable associations are very c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Visual computer 2018-04, Vol.34 (4), p.531-549
Hauptverfasser: Zhang, Huijie, Qu, Dezhan, Liu, Quanle, Shang, Qi, Hou, Yafang, Shen, Han-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 549
container_issue 4
container_start_page 531
container_title The Visual computer
container_volume 34
creator Zhang, Huijie
Qu, Dezhan
Liu, Quanle
Shang, Qi
Hou, Yafang
Shen, Han-Wei
description Uncertainty is inevitable in scientific simulations. As the increase in computing power, ensemble data have been generated for multiple variables. Uncertainty has become a great challenge to the analysis of variable associations for multivariate ensemble data, as the variable associations are very complex and diverse among different ensemble members. In this paper, we propose a novel visualization method to present the uncertain associations between a reference variable and the associated variable for multivariate ensemble data. Considering the huge scale of original ensemble data, Gaussian mixture model (GMM) is exploited to quantify the uncertainty and represent the original data compactly. To reveal the spatial uncertainty of the reference variable, a GMM-based method for extracting uncertainty isosurface is proposed and shows the accuracy advantage over Gaussian-based method. Meanwhile, a data reduction method is proposed to enhance the performance of extracting uncertainty isosurface. By mapping the values of the associated variable onto the uncertainty isosurface of the reference variable, a syncretic rendering method is proposed to show the variable associations intuitively. Besides, the screen space accumulating strategy is introduced to present the uncertainties of the associations. Furthermore, we provide a switchable view for users to obtain the credibility of variable associations. The credible associations can assist users to make reliable decisions. For the regions with not credible associations, the detailed information of the associations in every ensemble member can be explored through animation for further analysis. The effectiveness of our method is demonstrated by synthetic, climate and combustion data sets.
doi_str_mv 10.1007/s00371-017-1359-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917892566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917892566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-5e0184400349f3055a47a0db5ba00a29b3c1bd91cbf6c2c903f862b8306f87893</originalsourceid><addsrcrecordid>eNp1UMtKxDAUDaLg-PgAdwXX0ZtH2wTcyOALBtw463CTaSVDbcfczsD49Was4MrV5XIenHMYuxJwIwDqWwJQteAgai5Uabk5YjOhleRSifKYzTJguKyNPWVnRGvIf63tjN0t-9CkEWM_7otdpC128QvHOPRFO6Rihymi75oCiYYQfwAqsMduT5Eu2EmLHTWXv_ecLR8f3ubPfPH69DK_X_Cgaj3ysgFhtM4JtW0VlCXqGmHlS48AKK1XQfiVFcG3VZDBgmpNJb1RULUmR1bn7Hry3aThc9vQ6NbDNuUQ5KTNxawsqyqzxMQKaSBKTes2KX5g2jsB7jCSm0Zyubs7jORM1shJQ5nbvzfpz_l_0TeTI2mF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917892566</pqid></control><display><type>article</type><title>Uncertainty visualization for variable associations analysis</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Zhang, Huijie ; Qu, Dezhan ; Liu, Quanle ; Shang, Qi ; Hou, Yafang ; Shen, Han-Wei</creator><creatorcontrib>Zhang, Huijie ; Qu, Dezhan ; Liu, Quanle ; Shang, Qi ; Hou, Yafang ; Shen, Han-Wei</creatorcontrib><description>Uncertainty is inevitable in scientific simulations. As the increase in computing power, ensemble data have been generated for multiple variables. Uncertainty has become a great challenge to the analysis of variable associations for multivariate ensemble data, as the variable associations are very complex and diverse among different ensemble members. In this paper, we propose a novel visualization method to present the uncertain associations between a reference variable and the associated variable for multivariate ensemble data. Considering the huge scale of original ensemble data, Gaussian mixture model (GMM) is exploited to quantify the uncertainty and represent the original data compactly. To reveal the spatial uncertainty of the reference variable, a GMM-based method for extracting uncertainty isosurface is proposed and shows the accuracy advantage over Gaussian-based method. Meanwhile, a data reduction method is proposed to enhance the performance of extracting uncertainty isosurface. By mapping the values of the associated variable onto the uncertainty isosurface of the reference variable, a syncretic rendering method is proposed to show the variable associations intuitively. Besides, the screen space accumulating strategy is introduced to present the uncertainties of the associations. Furthermore, we provide a switchable view for users to obtain the credibility of variable associations. The credible associations can assist users to make reliable decisions. For the regions with not credible associations, the detailed information of the associations in every ensemble member can be explored through animation for further analysis. The effectiveness of our method is demonstrated by synthetic, climate and combustion data sets.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-017-1359-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Animation ; Artificial Intelligence ; Computer Graphics ; Computer Science ; Credibility ; Datasets ; Image Processing and Computer Vision ; Methods ; Multivariate analysis ; Normal distribution ; Original Article ; Probabilistic models ; Probability ; Random variables ; Simulation ; Uncertainty analysis ; Visualization</subject><ispartof>The Visual computer, 2018-04, Vol.34 (4), p.531-549</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Springer-Verlag Berlin Heidelberg 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-5e0184400349f3055a47a0db5ba00a29b3c1bd91cbf6c2c903f862b8306f87893</citedby><cites>FETCH-LOGICAL-c374t-5e0184400349f3055a47a0db5ba00a29b3c1bd91cbf6c2c903f862b8306f87893</cites><orcidid>0000-0001-8006-4845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-017-1359-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917892566?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21369,27903,27904,33723,41467,42536,43784,51297</link.rule.ids></links><search><creatorcontrib>Zhang, Huijie</creatorcontrib><creatorcontrib>Qu, Dezhan</creatorcontrib><creatorcontrib>Liu, Quanle</creatorcontrib><creatorcontrib>Shang, Qi</creatorcontrib><creatorcontrib>Hou, Yafang</creatorcontrib><creatorcontrib>Shen, Han-Wei</creatorcontrib><title>Uncertainty visualization for variable associations analysis</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>Uncertainty is inevitable in scientific simulations. As the increase in computing power, ensemble data have been generated for multiple variables. Uncertainty has become a great challenge to the analysis of variable associations for multivariate ensemble data, as the variable associations are very complex and diverse among different ensemble members. In this paper, we propose a novel visualization method to present the uncertain associations between a reference variable and the associated variable for multivariate ensemble data. Considering the huge scale of original ensemble data, Gaussian mixture model (GMM) is exploited to quantify the uncertainty and represent the original data compactly. To reveal the spatial uncertainty of the reference variable, a GMM-based method for extracting uncertainty isosurface is proposed and shows the accuracy advantage over Gaussian-based method. Meanwhile, a data reduction method is proposed to enhance the performance of extracting uncertainty isosurface. By mapping the values of the associated variable onto the uncertainty isosurface of the reference variable, a syncretic rendering method is proposed to show the variable associations intuitively. Besides, the screen space accumulating strategy is introduced to present the uncertainties of the associations. Furthermore, we provide a switchable view for users to obtain the credibility of variable associations. The credible associations can assist users to make reliable decisions. For the regions with not credible associations, the detailed information of the associations in every ensemble member can be explored through animation for further analysis. The effectiveness of our method is demonstrated by synthetic, climate and combustion data sets.</description><subject>Accuracy</subject><subject>Animation</subject><subject>Artificial Intelligence</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Credibility</subject><subject>Datasets</subject><subject>Image Processing and Computer Vision</subject><subject>Methods</subject><subject>Multivariate analysis</subject><subject>Normal distribution</subject><subject>Original Article</subject><subject>Probabilistic models</subject><subject>Probability</subject><subject>Random variables</subject><subject>Simulation</subject><subject>Uncertainty analysis</subject><subject>Visualization</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UMtKxDAUDaLg-PgAdwXX0ZtH2wTcyOALBtw463CTaSVDbcfczsD49Was4MrV5XIenHMYuxJwIwDqWwJQteAgai5Uabk5YjOhleRSifKYzTJguKyNPWVnRGvIf63tjN0t-9CkEWM_7otdpC128QvHOPRFO6Rihymi75oCiYYQfwAqsMduT5Eu2EmLHTWXv_ecLR8f3ubPfPH69DK_X_Cgaj3ysgFhtM4JtW0VlCXqGmHlS48AKK1XQfiVFcG3VZDBgmpNJb1RULUmR1bn7Hry3aThc9vQ6NbDNuUQ5KTNxawsqyqzxMQKaSBKTes2KX5g2jsB7jCSm0Zyubs7jORM1shJQ5nbvzfpz_l_0TeTI2mF</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Zhang, Huijie</creator><creator>Qu, Dezhan</creator><creator>Liu, Quanle</creator><creator>Shang, Qi</creator><creator>Hou, Yafang</creator><creator>Shen, Han-Wei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-8006-4845</orcidid></search><sort><creationdate>20180401</creationdate><title>Uncertainty visualization for variable associations analysis</title><author>Zhang, Huijie ; Qu, Dezhan ; Liu, Quanle ; Shang, Qi ; Hou, Yafang ; Shen, Han-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-5e0184400349f3055a47a0db5ba00a29b3c1bd91cbf6c2c903f862b8306f87893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>Animation</topic><topic>Artificial Intelligence</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Credibility</topic><topic>Datasets</topic><topic>Image Processing and Computer Vision</topic><topic>Methods</topic><topic>Multivariate analysis</topic><topic>Normal distribution</topic><topic>Original Article</topic><topic>Probabilistic models</topic><topic>Probability</topic><topic>Random variables</topic><topic>Simulation</topic><topic>Uncertainty analysis</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Huijie</creatorcontrib><creatorcontrib>Qu, Dezhan</creatorcontrib><creatorcontrib>Liu, Quanle</creatorcontrib><creatorcontrib>Shang, Qi</creatorcontrib><creatorcontrib>Hou, Yafang</creatorcontrib><creatorcontrib>Shen, Han-Wei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Huijie</au><au>Qu, Dezhan</au><au>Liu, Quanle</au><au>Shang, Qi</au><au>Hou, Yafang</au><au>Shen, Han-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty visualization for variable associations analysis</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>34</volume><issue>4</issue><spage>531</spage><epage>549</epage><pages>531-549</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>Uncertainty is inevitable in scientific simulations. As the increase in computing power, ensemble data have been generated for multiple variables. Uncertainty has become a great challenge to the analysis of variable associations for multivariate ensemble data, as the variable associations are very complex and diverse among different ensemble members. In this paper, we propose a novel visualization method to present the uncertain associations between a reference variable and the associated variable for multivariate ensemble data. Considering the huge scale of original ensemble data, Gaussian mixture model (GMM) is exploited to quantify the uncertainty and represent the original data compactly. To reveal the spatial uncertainty of the reference variable, a GMM-based method for extracting uncertainty isosurface is proposed and shows the accuracy advantage over Gaussian-based method. Meanwhile, a data reduction method is proposed to enhance the performance of extracting uncertainty isosurface. By mapping the values of the associated variable onto the uncertainty isosurface of the reference variable, a syncretic rendering method is proposed to show the variable associations intuitively. Besides, the screen space accumulating strategy is introduced to present the uncertainties of the associations. Furthermore, we provide a switchable view for users to obtain the credibility of variable associations. The credible associations can assist users to make reliable decisions. For the regions with not credible associations, the detailed information of the associations in every ensemble member can be explored through animation for further analysis. The effectiveness of our method is demonstrated by synthetic, climate and combustion data sets.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-017-1359-8</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8006-4845</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0178-2789
ispartof The Visual computer, 2018-04, Vol.34 (4), p.531-549
issn 0178-2789
1432-2315
language eng
recordid cdi_proquest_journals_2917892566
source SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Accuracy
Animation
Artificial Intelligence
Computer Graphics
Computer Science
Credibility
Datasets
Image Processing and Computer Vision
Methods
Multivariate analysis
Normal distribution
Original Article
Probabilistic models
Probability
Random variables
Simulation
Uncertainty analysis
Visualization
title Uncertainty visualization for variable associations analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A11%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20visualization%20for%20variable%20associations%20analysis&rft.jtitle=The%20Visual%20computer&rft.au=Zhang,%20Huijie&rft.date=2018-04-01&rft.volume=34&rft.issue=4&rft.spage=531&rft.epage=549&rft.pages=531-549&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-017-1359-8&rft_dat=%3Cproquest_cross%3E2917892566%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917892566&rft_id=info:pmid/&rfr_iscdi=true