Uncertainty visualization for variable associations analysis
Uncertainty is inevitable in scientific simulations. As the increase in computing power, ensemble data have been generated for multiple variables. Uncertainty has become a great challenge to the analysis of variable associations for multivariate ensemble data, as the variable associations are very c...
Gespeichert in:
Veröffentlicht in: | The Visual computer 2018-04, Vol.34 (4), p.531-549 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 549 |
---|---|
container_issue | 4 |
container_start_page | 531 |
container_title | The Visual computer |
container_volume | 34 |
creator | Zhang, Huijie Qu, Dezhan Liu, Quanle Shang, Qi Hou, Yafang Shen, Han-Wei |
description | Uncertainty is inevitable in scientific simulations. As the increase in computing power, ensemble data have been generated for multiple variables. Uncertainty has become a great challenge to the analysis of variable associations for multivariate ensemble data, as the variable associations are very complex and diverse among different ensemble members. In this paper, we propose a novel visualization method to present the uncertain associations between a reference variable and the associated variable for multivariate ensemble data. Considering the huge scale of original ensemble data, Gaussian mixture model (GMM) is exploited to quantify the uncertainty and represent the original data compactly. To reveal the spatial uncertainty of the reference variable, a GMM-based method for extracting uncertainty isosurface is proposed and shows the accuracy advantage over Gaussian-based method. Meanwhile, a data reduction method is proposed to enhance the performance of extracting uncertainty isosurface. By mapping the values of the associated variable onto the uncertainty isosurface of the reference variable, a syncretic rendering method is proposed to show the variable associations intuitively. Besides, the screen space accumulating strategy is introduced to present the uncertainties of the associations. Furthermore, we provide a switchable view for users to obtain the credibility of variable associations. The credible associations can assist users to make reliable decisions. For the regions with not credible associations, the detailed information of the associations in every ensemble member can be explored through animation for further analysis. The effectiveness of our method is demonstrated by synthetic, climate and combustion data sets. |
doi_str_mv | 10.1007/s00371-017-1359-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917892566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917892566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-5e0184400349f3055a47a0db5ba00a29b3c1bd91cbf6c2c903f862b8306f87893</originalsourceid><addsrcrecordid>eNp1UMtKxDAUDaLg-PgAdwXX0ZtH2wTcyOALBtw463CTaSVDbcfczsD49Was4MrV5XIenHMYuxJwIwDqWwJQteAgai5Uabk5YjOhleRSifKYzTJguKyNPWVnRGvIf63tjN0t-9CkEWM_7otdpC128QvHOPRFO6Rihymi75oCiYYQfwAqsMduT5Eu2EmLHTWXv_ecLR8f3ubPfPH69DK_X_Cgaj3ysgFhtM4JtW0VlCXqGmHlS48AKK1XQfiVFcG3VZDBgmpNJb1RULUmR1bn7Hry3aThc9vQ6NbDNuUQ5KTNxawsqyqzxMQKaSBKTes2KX5g2jsB7jCSm0Zyubs7jORM1shJQ5nbvzfpz_l_0TeTI2mF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917892566</pqid></control><display><type>article</type><title>Uncertainty visualization for variable associations analysis</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Zhang, Huijie ; Qu, Dezhan ; Liu, Quanle ; Shang, Qi ; Hou, Yafang ; Shen, Han-Wei</creator><creatorcontrib>Zhang, Huijie ; Qu, Dezhan ; Liu, Quanle ; Shang, Qi ; Hou, Yafang ; Shen, Han-Wei</creatorcontrib><description>Uncertainty is inevitable in scientific simulations. As the increase in computing power, ensemble data have been generated for multiple variables. Uncertainty has become a great challenge to the analysis of variable associations for multivariate ensemble data, as the variable associations are very complex and diverse among different ensemble members. In this paper, we propose a novel visualization method to present the uncertain associations between a reference variable and the associated variable for multivariate ensemble data. Considering the huge scale of original ensemble data, Gaussian mixture model (GMM) is exploited to quantify the uncertainty and represent the original data compactly. To reveal the spatial uncertainty of the reference variable, a GMM-based method for extracting uncertainty isosurface is proposed and shows the accuracy advantage over Gaussian-based method. Meanwhile, a data reduction method is proposed to enhance the performance of extracting uncertainty isosurface. By mapping the values of the associated variable onto the uncertainty isosurface of the reference variable, a syncretic rendering method is proposed to show the variable associations intuitively. Besides, the screen space accumulating strategy is introduced to present the uncertainties of the associations. Furthermore, we provide a switchable view for users to obtain the credibility of variable associations. The credible associations can assist users to make reliable decisions. For the regions with not credible associations, the detailed information of the associations in every ensemble member can be explored through animation for further analysis. The effectiveness of our method is demonstrated by synthetic, climate and combustion data sets.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-017-1359-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Animation ; Artificial Intelligence ; Computer Graphics ; Computer Science ; Credibility ; Datasets ; Image Processing and Computer Vision ; Methods ; Multivariate analysis ; Normal distribution ; Original Article ; Probabilistic models ; Probability ; Random variables ; Simulation ; Uncertainty analysis ; Visualization</subject><ispartof>The Visual computer, 2018-04, Vol.34 (4), p.531-549</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Springer-Verlag Berlin Heidelberg 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-5e0184400349f3055a47a0db5ba00a29b3c1bd91cbf6c2c903f862b8306f87893</citedby><cites>FETCH-LOGICAL-c374t-5e0184400349f3055a47a0db5ba00a29b3c1bd91cbf6c2c903f862b8306f87893</cites><orcidid>0000-0001-8006-4845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-017-1359-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917892566?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21369,27903,27904,33723,41467,42536,43784,51297</link.rule.ids></links><search><creatorcontrib>Zhang, Huijie</creatorcontrib><creatorcontrib>Qu, Dezhan</creatorcontrib><creatorcontrib>Liu, Quanle</creatorcontrib><creatorcontrib>Shang, Qi</creatorcontrib><creatorcontrib>Hou, Yafang</creatorcontrib><creatorcontrib>Shen, Han-Wei</creatorcontrib><title>Uncertainty visualization for variable associations analysis</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>Uncertainty is inevitable in scientific simulations. As the increase in computing power, ensemble data have been generated for multiple variables. Uncertainty has become a great challenge to the analysis of variable associations for multivariate ensemble data, as the variable associations are very complex and diverse among different ensemble members. In this paper, we propose a novel visualization method to present the uncertain associations between a reference variable and the associated variable for multivariate ensemble data. Considering the huge scale of original ensemble data, Gaussian mixture model (GMM) is exploited to quantify the uncertainty and represent the original data compactly. To reveal the spatial uncertainty of the reference variable, a GMM-based method for extracting uncertainty isosurface is proposed and shows the accuracy advantage over Gaussian-based method. Meanwhile, a data reduction method is proposed to enhance the performance of extracting uncertainty isosurface. By mapping the values of the associated variable onto the uncertainty isosurface of the reference variable, a syncretic rendering method is proposed to show the variable associations intuitively. Besides, the screen space accumulating strategy is introduced to present the uncertainties of the associations. Furthermore, we provide a switchable view for users to obtain the credibility of variable associations. The credible associations can assist users to make reliable decisions. For the regions with not credible associations, the detailed information of the associations in every ensemble member can be explored through animation for further analysis. The effectiveness of our method is demonstrated by synthetic, climate and combustion data sets.</description><subject>Accuracy</subject><subject>Animation</subject><subject>Artificial Intelligence</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Credibility</subject><subject>Datasets</subject><subject>Image Processing and Computer Vision</subject><subject>Methods</subject><subject>Multivariate analysis</subject><subject>Normal distribution</subject><subject>Original Article</subject><subject>Probabilistic models</subject><subject>Probability</subject><subject>Random variables</subject><subject>Simulation</subject><subject>Uncertainty analysis</subject><subject>Visualization</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UMtKxDAUDaLg-PgAdwXX0ZtH2wTcyOALBtw463CTaSVDbcfczsD49Was4MrV5XIenHMYuxJwIwDqWwJQteAgai5Uabk5YjOhleRSifKYzTJguKyNPWVnRGvIf63tjN0t-9CkEWM_7otdpC128QvHOPRFO6Rihymi75oCiYYQfwAqsMduT5Eu2EmLHTWXv_ecLR8f3ubPfPH69DK_X_Cgaj3ysgFhtM4JtW0VlCXqGmHlS48AKK1XQfiVFcG3VZDBgmpNJb1RULUmR1bn7Hry3aThc9vQ6NbDNuUQ5KTNxawsqyqzxMQKaSBKTes2KX5g2jsB7jCSm0Zyubs7jORM1shJQ5nbvzfpz_l_0TeTI2mF</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Zhang, Huijie</creator><creator>Qu, Dezhan</creator><creator>Liu, Quanle</creator><creator>Shang, Qi</creator><creator>Hou, Yafang</creator><creator>Shen, Han-Wei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-8006-4845</orcidid></search><sort><creationdate>20180401</creationdate><title>Uncertainty visualization for variable associations analysis</title><author>Zhang, Huijie ; Qu, Dezhan ; Liu, Quanle ; Shang, Qi ; Hou, Yafang ; Shen, Han-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-5e0184400349f3055a47a0db5ba00a29b3c1bd91cbf6c2c903f862b8306f87893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>Animation</topic><topic>Artificial Intelligence</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Credibility</topic><topic>Datasets</topic><topic>Image Processing and Computer Vision</topic><topic>Methods</topic><topic>Multivariate analysis</topic><topic>Normal distribution</topic><topic>Original Article</topic><topic>Probabilistic models</topic><topic>Probability</topic><topic>Random variables</topic><topic>Simulation</topic><topic>Uncertainty analysis</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Huijie</creatorcontrib><creatorcontrib>Qu, Dezhan</creatorcontrib><creatorcontrib>Liu, Quanle</creatorcontrib><creatorcontrib>Shang, Qi</creatorcontrib><creatorcontrib>Hou, Yafang</creatorcontrib><creatorcontrib>Shen, Han-Wei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Huijie</au><au>Qu, Dezhan</au><au>Liu, Quanle</au><au>Shang, Qi</au><au>Hou, Yafang</au><au>Shen, Han-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty visualization for variable associations analysis</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>34</volume><issue>4</issue><spage>531</spage><epage>549</epage><pages>531-549</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>Uncertainty is inevitable in scientific simulations. As the increase in computing power, ensemble data have been generated for multiple variables. Uncertainty has become a great challenge to the analysis of variable associations for multivariate ensemble data, as the variable associations are very complex and diverse among different ensemble members. In this paper, we propose a novel visualization method to present the uncertain associations between a reference variable and the associated variable for multivariate ensemble data. Considering the huge scale of original ensemble data, Gaussian mixture model (GMM) is exploited to quantify the uncertainty and represent the original data compactly. To reveal the spatial uncertainty of the reference variable, a GMM-based method for extracting uncertainty isosurface is proposed and shows the accuracy advantage over Gaussian-based method. Meanwhile, a data reduction method is proposed to enhance the performance of extracting uncertainty isosurface. By mapping the values of the associated variable onto the uncertainty isosurface of the reference variable, a syncretic rendering method is proposed to show the variable associations intuitively. Besides, the screen space accumulating strategy is introduced to present the uncertainties of the associations. Furthermore, we provide a switchable view for users to obtain the credibility of variable associations. The credible associations can assist users to make reliable decisions. For the regions with not credible associations, the detailed information of the associations in every ensemble member can be explored through animation for further analysis. The effectiveness of our method is demonstrated by synthetic, climate and combustion data sets.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-017-1359-8</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8006-4845</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-2789 |
ispartof | The Visual computer, 2018-04, Vol.34 (4), p.531-549 |
issn | 0178-2789 1432-2315 |
language | eng |
recordid | cdi_proquest_journals_2917892566 |
source | SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Accuracy Animation Artificial Intelligence Computer Graphics Computer Science Credibility Datasets Image Processing and Computer Vision Methods Multivariate analysis Normal distribution Original Article Probabilistic models Probability Random variables Simulation Uncertainty analysis Visualization |
title | Uncertainty visualization for variable associations analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A11%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20visualization%20for%20variable%20associations%20analysis&rft.jtitle=The%20Visual%20computer&rft.au=Zhang,%20Huijie&rft.date=2018-04-01&rft.volume=34&rft.issue=4&rft.spage=531&rft.epage=549&rft.pages=531-549&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-017-1359-8&rft_dat=%3Cproquest_cross%3E2917892566%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917892566&rft_id=info:pmid/&rfr_iscdi=true |