A survey on information visualization: recent advances and challenges

Information visualization (InfoVis), the study of transforming data, information, and knowledge into interactive visual representations, is very important to users because it provides mental models of information. The boom in big data analytics has triggered broad use of InfoVis in a variety of doma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Visual computer 2014-12, Vol.30 (12), p.1373-1393
Hauptverfasser: Liu, Shixia, Cui, Weiwei, Wu, Yingcai, Liu, Mengchen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1393
container_issue 12
container_start_page 1373
container_title The Visual computer
container_volume 30
creator Liu, Shixia
Cui, Weiwei
Wu, Yingcai
Liu, Mengchen
description Information visualization (InfoVis), the study of transforming data, information, and knowledge into interactive visual representations, is very important to users because it provides mental models of information. The boom in big data analytics has triggered broad use of InfoVis in a variety of domains, ranging from finance to sports to politics. In this paper, we present a comprehensive survey and key insights into this fast-rising area. The research on InfoVis is organized into a taxonomy that contains four main categories, namely empirical methodologies, user interactions, visualization frameworks, and applications, which are each described in terms of their major goals, fundamental principles, recent trends, and state-of-the-art approaches. At the conclusion of this survey, we identify existing technical challenges and propose directions for future research.
doi_str_mv 10.1007/s00371-013-0892-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917892447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917892447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-72dfe263692dc12afa301c1ac66c4a93e59aca24713d4d6f61f1ea477b81adc03</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wNuC52gmSTcbb6XUKhS86DmMSVa3bLM12S3UX2_qCp48zQy894b3EXIN7BYYU3eJMaGAMhCUVZpTcUImIAWnXMDslEwYqIpyVelzcpHShuVbST0hy3mRhrj3h6ILRRPqLm6xb_K-b9KAbfP1c90X0Vsf-gLdHoP1qcDgCvuBbevDu0-X5KzGNvmr3zklrw_Ll8UjXT-vnhbzNbWiKnuquKs9L0WpubPAsUbBwALasrQStfAzjRa5VCCcdGVdQg0epVJvFaCzTEzJzZi7i93n4FNvNt0QQ35puM4NNZdSZRWMKhu7lKKvzS42W4wHA8wcaZmRlsm0zJGWEdnDR0_K2lwp_iX_b_oG8tJtFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917892447</pqid></control><display><type>article</type><title>A survey on information visualization: recent advances and challenges</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Liu, Shixia ; Cui, Weiwei ; Wu, Yingcai ; Liu, Mengchen</creator><creatorcontrib>Liu, Shixia ; Cui, Weiwei ; Wu, Yingcai ; Liu, Mengchen</creatorcontrib><description>Information visualization (InfoVis), the study of transforming data, information, and knowledge into interactive visual representations, is very important to users because it provides mental models of information. The boom in big data analytics has triggered broad use of InfoVis in a variety of domains, ranging from finance to sports to politics. In this paper, we present a comprehensive survey and key insights into this fast-rising area. The research on InfoVis is organized into a taxonomy that contains four main categories, namely empirical methodologies, user interactions, visualization frameworks, and applications, which are each described in terms of their major goals, fundamental principles, recent trends, and state-of-the-art approaches. At the conclusion of this survey, we identify existing technical challenges and propose directions for future research.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-013-0892-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Big Data ; Classification schemes ; Computer Graphics ; Computer Science ; Design ; Empirical analysis ; Image Processing and Computer Vision ; Knowledge representation ; Original Article ; R&amp;D ; Research &amp; development ; Researchers ; Scientific visualization ; Taxonomy ; Trends ; Usability ; Visualization</subject><ispartof>The Visual computer, 2014-12, Vol.30 (12), p.1373-1393</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Springer-Verlag Berlin Heidelberg 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-72dfe263692dc12afa301c1ac66c4a93e59aca24713d4d6f61f1ea477b81adc03</citedby><cites>FETCH-LOGICAL-c386t-72dfe263692dc12afa301c1ac66c4a93e59aca24713d4d6f61f1ea477b81adc03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-013-0892-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917892447?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Liu, Shixia</creatorcontrib><creatorcontrib>Cui, Weiwei</creatorcontrib><creatorcontrib>Wu, Yingcai</creatorcontrib><creatorcontrib>Liu, Mengchen</creatorcontrib><title>A survey on information visualization: recent advances and challenges</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>Information visualization (InfoVis), the study of transforming data, information, and knowledge into interactive visual representations, is very important to users because it provides mental models of information. The boom in big data analytics has triggered broad use of InfoVis in a variety of domains, ranging from finance to sports to politics. In this paper, we present a comprehensive survey and key insights into this fast-rising area. The research on InfoVis is organized into a taxonomy that contains four main categories, namely empirical methodologies, user interactions, visualization frameworks, and applications, which are each described in terms of their major goals, fundamental principles, recent trends, and state-of-the-art approaches. At the conclusion of this survey, we identify existing technical challenges and propose directions for future research.</description><subject>Artificial Intelligence</subject><subject>Big Data</subject><subject>Classification schemes</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Design</subject><subject>Empirical analysis</subject><subject>Image Processing and Computer Vision</subject><subject>Knowledge representation</subject><subject>Original Article</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Researchers</subject><subject>Scientific visualization</subject><subject>Taxonomy</subject><subject>Trends</subject><subject>Usability</subject><subject>Visualization</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFLAzEQhYMoWKs_wNuC52gmSTcbb6XUKhS86DmMSVa3bLM12S3UX2_qCp48zQy894b3EXIN7BYYU3eJMaGAMhCUVZpTcUImIAWnXMDslEwYqIpyVelzcpHShuVbST0hy3mRhrj3h6ILRRPqLm6xb_K-b9KAbfP1c90X0Vsf-gLdHoP1qcDgCvuBbevDu0-X5KzGNvmr3zklrw_Ll8UjXT-vnhbzNbWiKnuquKs9L0WpubPAsUbBwALasrQStfAzjRa5VCCcdGVdQg0epVJvFaCzTEzJzZi7i93n4FNvNt0QQ35puM4NNZdSZRWMKhu7lKKvzS42W4wHA8wcaZmRlsm0zJGWEdnDR0_K2lwp_iX_b_oG8tJtFQ</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Liu, Shixia</creator><creator>Cui, Weiwei</creator><creator>Wu, Yingcai</creator><creator>Liu, Mengchen</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20141201</creationdate><title>A survey on information visualization: recent advances and challenges</title><author>Liu, Shixia ; Cui, Weiwei ; Wu, Yingcai ; Liu, Mengchen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-72dfe263692dc12afa301c1ac66c4a93e59aca24713d4d6f61f1ea477b81adc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Artificial Intelligence</topic><topic>Big Data</topic><topic>Classification schemes</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Design</topic><topic>Empirical analysis</topic><topic>Image Processing and Computer Vision</topic><topic>Knowledge representation</topic><topic>Original Article</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Researchers</topic><topic>Scientific visualization</topic><topic>Taxonomy</topic><topic>Trends</topic><topic>Usability</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shixia</creatorcontrib><creatorcontrib>Cui, Weiwei</creatorcontrib><creatorcontrib>Wu, Yingcai</creatorcontrib><creatorcontrib>Liu, Mengchen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Shixia</au><au>Cui, Weiwei</au><au>Wu, Yingcai</au><au>Liu, Mengchen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A survey on information visualization: recent advances and challenges</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>30</volume><issue>12</issue><spage>1373</spage><epage>1393</epage><pages>1373-1393</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>Information visualization (InfoVis), the study of transforming data, information, and knowledge into interactive visual representations, is very important to users because it provides mental models of information. The boom in big data analytics has triggered broad use of InfoVis in a variety of domains, ranging from finance to sports to politics. In this paper, we present a comprehensive survey and key insights into this fast-rising area. The research on InfoVis is organized into a taxonomy that contains four main categories, namely empirical methodologies, user interactions, visualization frameworks, and applications, which are each described in terms of their major goals, fundamental principles, recent trends, and state-of-the-art approaches. At the conclusion of this survey, we identify existing technical challenges and propose directions for future research.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-013-0892-3</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-2789
ispartof The Visual computer, 2014-12, Vol.30 (12), p.1373-1393
issn 0178-2789
1432-2315
language eng
recordid cdi_proquest_journals_2917892447
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Artificial Intelligence
Big Data
Classification schemes
Computer Graphics
Computer Science
Design
Empirical analysis
Image Processing and Computer Vision
Knowledge representation
Original Article
R&D
Research & development
Researchers
Scientific visualization
Taxonomy
Trends
Usability
Visualization
title A survey on information visualization: recent advances and challenges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A00%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20survey%20on%20information%20visualization:%20recent%20advances%20and%20challenges&rft.jtitle=The%20Visual%20computer&rft.au=Liu,%20Shixia&rft.date=2014-12-01&rft.volume=30&rft.issue=12&rft.spage=1373&rft.epage=1393&rft.pages=1373-1393&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-013-0892-3&rft_dat=%3Cproquest_cross%3E2917892447%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917892447&rft_id=info:pmid/&rfr_iscdi=true