A survey on information visualization: recent advances and challenges
Information visualization (InfoVis), the study of transforming data, information, and knowledge into interactive visual representations, is very important to users because it provides mental models of information. The boom in big data analytics has triggered broad use of InfoVis in a variety of doma...
Gespeichert in:
Veröffentlicht in: | The Visual computer 2014-12, Vol.30 (12), p.1373-1393 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1393 |
---|---|
container_issue | 12 |
container_start_page | 1373 |
container_title | The Visual computer |
container_volume | 30 |
creator | Liu, Shixia Cui, Weiwei Wu, Yingcai Liu, Mengchen |
description | Information visualization (InfoVis), the study of transforming data, information, and knowledge into interactive visual representations, is very important to users because it provides mental models of information. The boom in big data analytics has triggered broad use of InfoVis in a variety of domains, ranging from finance to sports to politics. In this paper, we present a comprehensive survey and key insights into this fast-rising area. The research on InfoVis is organized into a taxonomy that contains four main categories, namely empirical methodologies, user interactions, visualization frameworks, and applications, which are each described in terms of their major goals, fundamental principles, recent trends, and state-of-the-art approaches. At the conclusion of this survey, we identify existing technical challenges and propose directions for future research. |
doi_str_mv | 10.1007/s00371-013-0892-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917892447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917892447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-72dfe263692dc12afa301c1ac66c4a93e59aca24713d4d6f61f1ea477b81adc03</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wNuC52gmSTcbb6XUKhS86DmMSVa3bLM12S3UX2_qCp48zQy894b3EXIN7BYYU3eJMaGAMhCUVZpTcUImIAWnXMDslEwYqIpyVelzcpHShuVbST0hy3mRhrj3h6ILRRPqLm6xb_K-b9KAbfP1c90X0Vsf-gLdHoP1qcDgCvuBbevDu0-X5KzGNvmr3zklrw_Ll8UjXT-vnhbzNbWiKnuquKs9L0WpubPAsUbBwALasrQStfAzjRa5VCCcdGVdQg0epVJvFaCzTEzJzZi7i93n4FNvNt0QQ35puM4NNZdSZRWMKhu7lKKvzS42W4wHA8wcaZmRlsm0zJGWEdnDR0_K2lwp_iX_b_oG8tJtFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917892447</pqid></control><display><type>article</type><title>A survey on information visualization: recent advances and challenges</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Liu, Shixia ; Cui, Weiwei ; Wu, Yingcai ; Liu, Mengchen</creator><creatorcontrib>Liu, Shixia ; Cui, Weiwei ; Wu, Yingcai ; Liu, Mengchen</creatorcontrib><description>Information visualization (InfoVis), the study of transforming data, information, and knowledge into interactive visual representations, is very important to users because it provides mental models of information. The boom in big data analytics has triggered broad use of InfoVis in a variety of domains, ranging from finance to sports to politics. In this paper, we present a comprehensive survey and key insights into this fast-rising area. The research on InfoVis is organized into a taxonomy that contains four main categories, namely empirical methodologies, user interactions, visualization frameworks, and applications, which are each described in terms of their major goals, fundamental principles, recent trends, and state-of-the-art approaches. At the conclusion of this survey, we identify existing technical challenges and propose directions for future research.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-013-0892-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Big Data ; Classification schemes ; Computer Graphics ; Computer Science ; Design ; Empirical analysis ; Image Processing and Computer Vision ; Knowledge representation ; Original Article ; R&D ; Research & development ; Researchers ; Scientific visualization ; Taxonomy ; Trends ; Usability ; Visualization</subject><ispartof>The Visual computer, 2014-12, Vol.30 (12), p.1373-1393</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Springer-Verlag Berlin Heidelberg 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-72dfe263692dc12afa301c1ac66c4a93e59aca24713d4d6f61f1ea477b81adc03</citedby><cites>FETCH-LOGICAL-c386t-72dfe263692dc12afa301c1ac66c4a93e59aca24713d4d6f61f1ea477b81adc03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-013-0892-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917892447?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Liu, Shixia</creatorcontrib><creatorcontrib>Cui, Weiwei</creatorcontrib><creatorcontrib>Wu, Yingcai</creatorcontrib><creatorcontrib>Liu, Mengchen</creatorcontrib><title>A survey on information visualization: recent advances and challenges</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>Information visualization (InfoVis), the study of transforming data, information, and knowledge into interactive visual representations, is very important to users because it provides mental models of information. The boom in big data analytics has triggered broad use of InfoVis in a variety of domains, ranging from finance to sports to politics. In this paper, we present a comprehensive survey and key insights into this fast-rising area. The research on InfoVis is organized into a taxonomy that contains four main categories, namely empirical methodologies, user interactions, visualization frameworks, and applications, which are each described in terms of their major goals, fundamental principles, recent trends, and state-of-the-art approaches. At the conclusion of this survey, we identify existing technical challenges and propose directions for future research.</description><subject>Artificial Intelligence</subject><subject>Big Data</subject><subject>Classification schemes</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Design</subject><subject>Empirical analysis</subject><subject>Image Processing and Computer Vision</subject><subject>Knowledge representation</subject><subject>Original Article</subject><subject>R&D</subject><subject>Research & development</subject><subject>Researchers</subject><subject>Scientific visualization</subject><subject>Taxonomy</subject><subject>Trends</subject><subject>Usability</subject><subject>Visualization</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFLAzEQhYMoWKs_wNuC52gmSTcbb6XUKhS86DmMSVa3bLM12S3UX2_qCp48zQy894b3EXIN7BYYU3eJMaGAMhCUVZpTcUImIAWnXMDslEwYqIpyVelzcpHShuVbST0hy3mRhrj3h6ILRRPqLm6xb_K-b9KAbfP1c90X0Vsf-gLdHoP1qcDgCvuBbevDu0-X5KzGNvmr3zklrw_Ll8UjXT-vnhbzNbWiKnuquKs9L0WpubPAsUbBwALasrQStfAzjRa5VCCcdGVdQg0epVJvFaCzTEzJzZi7i93n4FNvNt0QQ35puM4NNZdSZRWMKhu7lKKvzS42W4wHA8wcaZmRlsm0zJGWEdnDR0_K2lwp_iX_b_oG8tJtFQ</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Liu, Shixia</creator><creator>Cui, Weiwei</creator><creator>Wu, Yingcai</creator><creator>Liu, Mengchen</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20141201</creationdate><title>A survey on information visualization: recent advances and challenges</title><author>Liu, Shixia ; Cui, Weiwei ; Wu, Yingcai ; Liu, Mengchen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-72dfe263692dc12afa301c1ac66c4a93e59aca24713d4d6f61f1ea477b81adc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Artificial Intelligence</topic><topic>Big Data</topic><topic>Classification schemes</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Design</topic><topic>Empirical analysis</topic><topic>Image Processing and Computer Vision</topic><topic>Knowledge representation</topic><topic>Original Article</topic><topic>R&D</topic><topic>Research & development</topic><topic>Researchers</topic><topic>Scientific visualization</topic><topic>Taxonomy</topic><topic>Trends</topic><topic>Usability</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shixia</creatorcontrib><creatorcontrib>Cui, Weiwei</creatorcontrib><creatorcontrib>Wu, Yingcai</creatorcontrib><creatorcontrib>Liu, Mengchen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Shixia</au><au>Cui, Weiwei</au><au>Wu, Yingcai</au><au>Liu, Mengchen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A survey on information visualization: recent advances and challenges</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>30</volume><issue>12</issue><spage>1373</spage><epage>1393</epage><pages>1373-1393</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>Information visualization (InfoVis), the study of transforming data, information, and knowledge into interactive visual representations, is very important to users because it provides mental models of information. The boom in big data analytics has triggered broad use of InfoVis in a variety of domains, ranging from finance to sports to politics. In this paper, we present a comprehensive survey and key insights into this fast-rising area. The research on InfoVis is organized into a taxonomy that contains four main categories, namely empirical methodologies, user interactions, visualization frameworks, and applications, which are each described in terms of their major goals, fundamental principles, recent trends, and state-of-the-art approaches. At the conclusion of this survey, we identify existing technical challenges and propose directions for future research.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-013-0892-3</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-2789 |
ispartof | The Visual computer, 2014-12, Vol.30 (12), p.1373-1393 |
issn | 0178-2789 1432-2315 |
language | eng |
recordid | cdi_proquest_journals_2917892447 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Artificial Intelligence Big Data Classification schemes Computer Graphics Computer Science Design Empirical analysis Image Processing and Computer Vision Knowledge representation Original Article R&D Research & development Researchers Scientific visualization Taxonomy Trends Usability Visualization |
title | A survey on information visualization: recent advances and challenges |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A00%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20survey%20on%20information%20visualization:%20recent%20advances%20and%20challenges&rft.jtitle=The%20Visual%20computer&rft.au=Liu,%20Shixia&rft.date=2014-12-01&rft.volume=30&rft.issue=12&rft.spage=1373&rft.epage=1393&rft.pages=1373-1393&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-013-0892-3&rft_dat=%3Cproquest_cross%3E2917892447%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917892447&rft_id=info:pmid/&rfr_iscdi=true |