Extension of the Nicholls-Lee-Nichols algorithm to three dimensions

A new algorithm for clipping a line segment against a pyramid in E3 is presented. This algorithm avoids computation of intersection points that are not end points of the output line segment. It also solves all cases more effectively. The performance of this algorithm is shown to be consistently bett...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Visual computer 2001-06, Vol.17 (4), p.236-242
Hauptverfasser: Skala, Václav, Bui, Duc Huy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 242
container_issue 4
container_start_page 236
container_title The Visual computer
container_volume 17
creator Skala, Václav
Bui, Duc Huy
description A new algorithm for clipping a line segment against a pyramid in E3 is presented. This algorithm avoids computation of intersection points that are not end points of the output line segment. It also solves all cases more effectively. The performance of this algorithm is shown to be consistently better than that of existing algorithms, including the Cohen–Sutherland, Liang–Barsky, and Cyrus–Beck algorithms.
doi_str_mv 10.1007/s003710000094
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917886801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917886801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-4a6cf7d5d639181dddb43a71004b0bacb679db6173912b0bca5c3591aa5a34b63</originalsourceid><addsrcrecordid>eNpVUE1LxDAQDaJgXT16L3iO5qtJc5SyukLRi55DmqS2S9usSRb035ulXpzLzJt58_UAuMXoHiMkHiJCVOQom2RnoMCMEkgors5BgbCoIRG1vARXMe5RxoLJAjTb7-SWOPql9H2ZBle-jmbw0xRh6xxcQSz19OnDmIa5TD6zgnOlHee1MV6Di15P0d38-Q34eNq-NzvYvj2_NI8tNITTBJnmphe2spxKXGNrbceoPh3MOtRp03EhbcexyGWSM0ZXhlYSa11pyjpON-BunXsI_uvoYlJ7fwxLXqmIzP_VvEY4s-DKMsHHGFyvDmGcdfhRGKmTTuqfTvQXGiNZ3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917886801</pqid></control><display><type>article</type><title>Extension of the Nicholls-Lee-Nichols algorithm to three dimensions</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Skala, Václav ; Bui, Duc Huy</creator><creatorcontrib>Skala, Václav ; Bui, Duc Huy</creatorcontrib><description>A new algorithm for clipping a line segment against a pyramid in E3 is presented. This algorithm avoids computation of intersection points that are not end points of the output line segment. It also solves all cases more effectively. The performance of this algorithm is shown to be consistently better than that of existing algorithms, including the Cohen–Sutherland, Liang–Barsky, and Cyrus–Beck algorithms.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s003710000094</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Algorithms ; Segments</subject><ispartof>The Visual computer, 2001-06, Vol.17 (4), p.236-242</ispartof><rights>Springer-Verlag 2001.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-4a6cf7d5d639181dddb43a71004b0bacb679db6173912b0bca5c3591aa5a34b63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2917886801?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,21390,27926,27927,33746,43807,64387,64391,72471</link.rule.ids></links><search><creatorcontrib>Skala, Václav</creatorcontrib><creatorcontrib>Bui, Duc Huy</creatorcontrib><title>Extension of the Nicholls-Lee-Nichols algorithm to three dimensions</title><title>The Visual computer</title><description>A new algorithm for clipping a line segment against a pyramid in E3 is presented. This algorithm avoids computation of intersection points that are not end points of the output line segment. It also solves all cases more effectively. The performance of this algorithm is shown to be consistently better than that of existing algorithms, including the Cohen–Sutherland, Liang–Barsky, and Cyrus–Beck algorithms.</description><subject>Algorithms</subject><subject>Segments</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpVUE1LxDAQDaJgXT16L3iO5qtJc5SyukLRi55DmqS2S9usSRb035ulXpzLzJt58_UAuMXoHiMkHiJCVOQom2RnoMCMEkgors5BgbCoIRG1vARXMe5RxoLJAjTb7-SWOPql9H2ZBle-jmbw0xRh6xxcQSz19OnDmIa5TD6zgnOlHee1MV6Di15P0d38-Q34eNq-NzvYvj2_NI8tNITTBJnmphe2spxKXGNrbceoPh3MOtRp03EhbcexyGWSM0ZXhlYSa11pyjpON-BunXsI_uvoYlJ7fwxLXqmIzP_VvEY4s-DKMsHHGFyvDmGcdfhRGKmTTuqfTvQXGiNZ3g</recordid><startdate>200106</startdate><enddate>200106</enddate><creator>Skala, Václav</creator><creator>Bui, Duc Huy</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>200106</creationdate><title>Extension of the Nicholls-Lee-Nichols algorithm to three dimensions</title><author>Skala, Václav ; Bui, Duc Huy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-4a6cf7d5d639181dddb43a71004b0bacb679db6173912b0bca5c3591aa5a34b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Segments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skala, Václav</creatorcontrib><creatorcontrib>Bui, Duc Huy</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skala, Václav</au><au>Bui, Duc Huy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extension of the Nicholls-Lee-Nichols algorithm to three dimensions</atitle><jtitle>The Visual computer</jtitle><date>2001-06</date><risdate>2001</risdate><volume>17</volume><issue>4</issue><spage>236</spage><epage>242</epage><pages>236-242</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>A new algorithm for clipping a line segment against a pyramid in E3 is presented. This algorithm avoids computation of intersection points that are not end points of the output line segment. It also solves all cases more effectively. The performance of this algorithm is shown to be consistently better than that of existing algorithms, including the Cohen–Sutherland, Liang–Barsky, and Cyrus–Beck algorithms.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s003710000094</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-2789
ispartof The Visual computer, 2001-06, Vol.17 (4), p.236-242
issn 0178-2789
1432-2315
language eng
recordid cdi_proquest_journals_2917886801
source SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Algorithms
Segments
title Extension of the Nicholls-Lee-Nichols algorithm to three dimensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A00%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extension%20of%20the%20Nicholls-Lee-Nichols%20algorithm%20to%20three%20dimensions&rft.jtitle=The%20Visual%20computer&rft.au=Skala,%20V%C3%A1clav&rft.date=2001-06&rft.volume=17&rft.issue=4&rft.spage=236&rft.epage=242&rft.pages=236-242&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s003710000094&rft_dat=%3Cproquest_cross%3E2917886801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917886801&rft_id=info:pmid/&rfr_iscdi=true