Extension of the Nicholls-Lee-Nichols algorithm to three dimensions
A new algorithm for clipping a line segment against a pyramid in E3 is presented. This algorithm avoids computation of intersection points that are not end points of the output line segment. It also solves all cases more effectively. The performance of this algorithm is shown to be consistently bett...
Gespeichert in:
Veröffentlicht in: | The Visual computer 2001-06, Vol.17 (4), p.236-242 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 242 |
---|---|
container_issue | 4 |
container_start_page | 236 |
container_title | The Visual computer |
container_volume | 17 |
creator | Skala, Václav Bui, Duc Huy |
description | A new algorithm for clipping a line segment against a pyramid in E3 is presented. This algorithm avoids computation of intersection points that are not end points of the output line segment. It also solves all cases more effectively. The performance of this algorithm is shown to be consistently better than that of existing algorithms, including the Cohen–Sutherland, Liang–Barsky, and Cyrus–Beck algorithms. |
doi_str_mv | 10.1007/s003710000094 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917886801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917886801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-4a6cf7d5d639181dddb43a71004b0bacb679db6173912b0bca5c3591aa5a34b63</originalsourceid><addsrcrecordid>eNpVUE1LxDAQDaJgXT16L3iO5qtJc5SyukLRi55DmqS2S9usSRb035ulXpzLzJt58_UAuMXoHiMkHiJCVOQom2RnoMCMEkgors5BgbCoIRG1vARXMe5RxoLJAjTb7-SWOPql9H2ZBle-jmbw0xRh6xxcQSz19OnDmIa5TD6zgnOlHee1MV6Di15P0d38-Q34eNq-NzvYvj2_NI8tNITTBJnmphe2spxKXGNrbceoPh3MOtRp03EhbcexyGWSM0ZXhlYSa11pyjpON-BunXsI_uvoYlJ7fwxLXqmIzP_VvEY4s-DKMsHHGFyvDmGcdfhRGKmTTuqfTvQXGiNZ3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917886801</pqid></control><display><type>article</type><title>Extension of the Nicholls-Lee-Nichols algorithm to three dimensions</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Skala, Václav ; Bui, Duc Huy</creator><creatorcontrib>Skala, Václav ; Bui, Duc Huy</creatorcontrib><description>A new algorithm for clipping a line segment against a pyramid in E3 is presented. This algorithm avoids computation of intersection points that are not end points of the output line segment. It also solves all cases more effectively. The performance of this algorithm is shown to be consistently better than that of existing algorithms, including the Cohen–Sutherland, Liang–Barsky, and Cyrus–Beck algorithms.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s003710000094</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Algorithms ; Segments</subject><ispartof>The Visual computer, 2001-06, Vol.17 (4), p.236-242</ispartof><rights>Springer-Verlag 2001.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-4a6cf7d5d639181dddb43a71004b0bacb679db6173912b0bca5c3591aa5a34b63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2917886801?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,21390,27926,27927,33746,43807,64387,64391,72471</link.rule.ids></links><search><creatorcontrib>Skala, Václav</creatorcontrib><creatorcontrib>Bui, Duc Huy</creatorcontrib><title>Extension of the Nicholls-Lee-Nichols algorithm to three dimensions</title><title>The Visual computer</title><description>A new algorithm for clipping a line segment against a pyramid in E3 is presented. This algorithm avoids computation of intersection points that are not end points of the output line segment. It also solves all cases more effectively. The performance of this algorithm is shown to be consistently better than that of existing algorithms, including the Cohen–Sutherland, Liang–Barsky, and Cyrus–Beck algorithms.</description><subject>Algorithms</subject><subject>Segments</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpVUE1LxDAQDaJgXT16L3iO5qtJc5SyukLRi55DmqS2S9usSRb035ulXpzLzJt58_UAuMXoHiMkHiJCVOQom2RnoMCMEkgors5BgbCoIRG1vARXMe5RxoLJAjTb7-SWOPql9H2ZBle-jmbw0xRh6xxcQSz19OnDmIa5TD6zgnOlHee1MV6Di15P0d38-Q34eNq-NzvYvj2_NI8tNITTBJnmphe2spxKXGNrbceoPh3MOtRp03EhbcexyGWSM0ZXhlYSa11pyjpON-BunXsI_uvoYlJ7fwxLXqmIzP_VvEY4s-DKMsHHGFyvDmGcdfhRGKmTTuqfTvQXGiNZ3g</recordid><startdate>200106</startdate><enddate>200106</enddate><creator>Skala, Václav</creator><creator>Bui, Duc Huy</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>200106</creationdate><title>Extension of the Nicholls-Lee-Nichols algorithm to three dimensions</title><author>Skala, Václav ; Bui, Duc Huy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-4a6cf7d5d639181dddb43a71004b0bacb679db6173912b0bca5c3591aa5a34b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Segments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skala, Václav</creatorcontrib><creatorcontrib>Bui, Duc Huy</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skala, Václav</au><au>Bui, Duc Huy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extension of the Nicholls-Lee-Nichols algorithm to three dimensions</atitle><jtitle>The Visual computer</jtitle><date>2001-06</date><risdate>2001</risdate><volume>17</volume><issue>4</issue><spage>236</spage><epage>242</epage><pages>236-242</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>A new algorithm for clipping a line segment against a pyramid in E3 is presented. This algorithm avoids computation of intersection points that are not end points of the output line segment. It also solves all cases more effectively. The performance of this algorithm is shown to be consistently better than that of existing algorithms, including the Cohen–Sutherland, Liang–Barsky, and Cyrus–Beck algorithms.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s003710000094</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-2789 |
ispartof | The Visual computer, 2001-06, Vol.17 (4), p.236-242 |
issn | 0178-2789 1432-2315 |
language | eng |
recordid | cdi_proquest_journals_2917886801 |
source | SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Algorithms Segments |
title | Extension of the Nicholls-Lee-Nichols algorithm to three dimensions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A00%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extension%20of%20the%20Nicholls-Lee-Nichols%20algorithm%20to%20three%20dimensions&rft.jtitle=The%20Visual%20computer&rft.au=Skala,%20V%C3%A1clav&rft.date=2001-06&rft.volume=17&rft.issue=4&rft.spage=236&rft.epage=242&rft.pages=236-242&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s003710000094&rft_dat=%3Cproquest_cross%3E2917886801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917886801&rft_id=info:pmid/&rfr_iscdi=true |